1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
//! A channel implemented with heap allocated buffers (require `alloc` feature).
//!
//! This module implements a broadcast channel with a fixed-size buffer, allocated
//! in the heap. This means that multiple senders can be used without the need to use the same reference.
//!
//! The channel overwrites the oldest message if the buffer is full, prioritizing the latest data.
//!
//! **Key Features:**
//!
//! * **Broadcast:** Multiple senders can send messages to multiple receivers simultaneously.
//! * **Heap-allocated Buffers:** Ensures data storage flexibility when the application requires it.
//! * **Fixed-size Buffer:** Provides bounded memory usage with predictable performance.
//! * **Overwriting Behavior:** Prioritizes the latest data in scenarios where the buffer becomes full.
//! * **Cloneable:** Both `Sender` and `Receiver` are cloneable, enabling flexible message distribution patterns.
//!
//! **Usage Considerations:**
//! * Well-suited for scenarios where multiple components need to broadcast messages and the latest data takes priority.
//! * Ideal when heap allocation is necessary or desirable.
//! * Receivers must be fast enough to keep up with the senders and avoid losing messages due to overwriting.
//!
//! # Examples
//! ```
//! # #[cfg(not(loom))]
//! # {
//! use blinkcast::alloc::channel;
//! let (sender, mut receiver) = channel::<i32>(4);
//! sender.send(1);
//! assert_eq!(receiver.recv(), Some(1));
//!
//! sender.send(2);
//! sender.send(3);
//!
//! assert_eq!(receiver.recv(), Some(2));
//!
//! // clone the receiver
//! let mut receiver2 = receiver.clone();
//! assert_eq!(receiver.recv(), Some(3));
//! assert_eq!(receiver2.recv(), Some(3));
//! assert_eq!(receiver.recv(), None);
//! assert_eq!(receiver2.recv(), None);
//! # }
//! ```
extern crate alloc;
use alloc::{boxed::Box, vec::Vec};
use crate::{core_impl, unpack_data_index, AtomicUsize, Node, Ordering, ReaderData, MAX_LEN};
#[cfg(not(loom))]
use alloc::sync::Arc;
#[cfg(loom)]
use loom::sync::Arc;
struct InnerChannel<T> {
buffer: Box<[Node<T>]>,
head: AtomicUsize,
}
impl<T: Clone> InnerChannel<T> {
fn new(size: usize) -> Self {
assert!(size <= MAX_LEN, "Exceeded the maximum length");
let mut buffer = Vec::with_capacity(size);
for _ in 0..size {
buffer.push(Default::default());
}
let buffer = buffer.into_boxed_slice();
Self {
buffer,
head: AtomicUsize::new(0),
}
}
fn push(&self, value: T) {
core_impl::push(&self.buffer, &self.head, value);
}
fn pop(&self, reader: &mut ReaderData) -> Option<T> {
core_impl::pop(&self.buffer, &self.head, reader)
}
}
/// The sender of the [`channel`].
///
/// This is a cloneable sender, so you can have multiple senders that will send to the same
/// channel.
///
/// Broadcast messages sent by using the [`send`](Sender::send) method.
///
/// # Examples
/// ```
/// # #[cfg(not(loom))]
/// # {
/// use blinkcast::alloc::channel;
///
/// let (sender, mut receiver) = channel::<i32>(4);
///
/// sender.send(1);
/// let sender2 = sender.clone();
/// sender2.send(2);
///
/// assert_eq!(receiver.recv(), Some(1));
/// assert_eq!(receiver.recv(), Some(2));
/// assert_eq!(receiver.recv(), None);
/// # }
/// ```
/// Or using the [`new`](Sender::new) method:
/// ```
/// # #[cfg(not(loom))]
/// # {
/// use blinkcast::alloc::Sender;
///
/// let sender = Sender::<i32>::new(4);
///
/// let mut receiver = sender.new_receiver();
///
/// sender.send(1);
/// sender.send(2);
/// assert_eq!(receiver.recv(), Some(1));
/// assert_eq!(receiver.recv(), Some(2));
/// assert_eq!(receiver.recv(), None);
/// # }
/// ```
pub struct Sender<T> {
queue: Arc<InnerChannel<T>>,
}
unsafe impl<T: Clone + Send> Send for Sender<T> {}
unsafe impl<T: Clone + Send> Sync for Sender<T> {}
impl<T: Clone> Sender<T> {
/// Sends a message to the channel.
/// If the channel is full, the oldest message will be overwritten.
/// So the receiver must be quick or it will lose the old data.
pub fn send(&self, value: T) {
self.queue.push(value);
}
/// Creates a new channel with a buffer of size `N`.
#[allow(clippy::new_without_default)]
pub fn new(size: usize) -> Self {
Self {
queue: Arc::new(InnerChannel::<T>::new(size)),
}
}
/// Creates a new receiver that starts from the same point as the sender.
///
/// # Examples
/// ```
/// # #[cfg(not(loom))]
/// # {
/// use blinkcast::alloc::Sender;
///
/// let sender = Sender::<i32>::new(4);
///
/// sender.send(1);
///
/// let mut receiver = sender.new_receiver();
/// assert_eq!(receiver.recv(), None);
///
/// sender.send(2);
/// assert_eq!(receiver.recv(), Some(2));
/// assert_eq!(receiver.recv(), None);
/// # }
/// ```
pub fn new_receiver(&self) -> Receiver<T> {
let head = self.queue.head.load(Ordering::Relaxed);
let (lap, index) = unpack_data_index(head);
Receiver {
queue: self.queue.clone(),
reader: ReaderData { index, lap },
}
}
}
impl<T> Clone for Sender<T> {
fn clone(&self) -> Self {
Self {
queue: self.queue.clone(),
}
}
}
/// The receiver of the [`channel`].
///
/// Can also be created with the [`new_receiver`](Sender::new_receiver) method of the [`Sender`].
///
/// This is a cloneable receiver, so you can have multiple receivers that start from the same
/// point.
///
/// Broadcast messages sent by the channel are received by the [`recv`](Receiver::recv) method.
///
/// # Examples
/// ```
/// # #[cfg(not(loom))]
/// # {
/// use blinkcast::alloc::channel;
/// let (sender, mut receiver) = channel::<i32>(4);
/// sender.send(1);
/// assert_eq!(receiver.recv(), Some(1));
///
/// sender.send(2);
/// sender.send(3);
///
/// assert_eq!(receiver.recv(), Some(2));
///
/// // clone the receiver
/// let mut receiver2 = receiver.clone();
/// assert_eq!(receiver.recv(), Some(3));
/// assert_eq!(receiver2.recv(), Some(3));
/// assert_eq!(receiver.recv(), None);
/// assert_eq!(receiver2.recv(), None);
/// # }
/// ```
pub struct Receiver<T> {
queue: Arc<InnerChannel<T>>,
reader: ReaderData,
}
unsafe impl<T: Clone + Send> Send for Receiver<T> {}
unsafe impl<T: Clone + Send> Sync for Receiver<T> {}
impl<T: Clone> Receiver<T> {
/// Receives a message from the channel.
///
/// If there is no message available, this method will return `None`.
pub fn recv(&mut self) -> Option<T> {
self.queue.pop(&mut self.reader)
}
}
impl<T: Clone> Clone for Receiver<T> {
fn clone(&self) -> Self {
Self {
queue: self.queue.clone(),
reader: self.reader.clone(),
}
}
}
/// Creates a new channel, returning the [`Sender`] and [`Receiver`] for it.
///
/// Both of the sender and receiver are cloneable, so you can have multiple senders and receivers.
///
/// Another method to create a channel is using the [`Sender::new`] and [`Sender::new_receiver`] methods.
///
/// # Examples
/// ```
/// # #[cfg(not(loom))]
/// # {
/// use blinkcast::alloc::channel;
/// let (sender, mut receiver) = channel::<i32>(4);
///
/// sender.send(1);
/// sender.send(2);
///
/// assert_eq!(receiver.recv(), Some(1));
///
/// let sender2 = sender.clone();
/// sender2.send(3);
///
/// assert_eq!(receiver.recv(), Some(2));
///
/// let mut receiver2 = receiver.clone();
/// assert_eq!(receiver.recv(), Some(3));
/// assert_eq!(receiver2.recv(), Some(3));
/// assert_eq!(receiver.recv(), None);
/// assert_eq!(receiver2.recv(), None);
/// # }
/// ```
pub fn channel<T: Clone>(size: usize) -> (Sender<T>, Receiver<T>) {
let sender = Sender::<T>::new(size);
let receiver = sender.new_receiver();
(sender, receiver)
}