1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
//! A channel implemented with static memory.
//!
//! This module implements a broadcast channel with a fixed-size buffer, without allocation.
//! The buffer (hosted by the [`Sender`]) is stored in static memory, it can be in the stack
//! or in global static variables, and this can be done because [`Sender::new`] is a `const fn`.
//!
//! When sending, we only need `&Sender`, so it can be done from multiple threads/cores as the same time.
//!
//! The channel overwrites the oldest message if the buffer is full, prioritizing the latest data.
//!
//! **Key Features:**
//!
//! * **Broadcast:** Multiple senders can send messages to multiple receivers simultaneously.
//! * **Fixed-size Buffer:** Provides bounded memory usage with predictable performance.
//! * **Overwriting Behavior:** Prioritizes the latest data in scenarios where the buffer becomes full.
//! * **Cloneable:** the `Receiver` are cloneable, enabling flexible message distribution patterns,
//! the `Sender` is not cloneable, but if setup in a global static variable, it can be used from multiple locations.
//!
//! **Usage Considerations:**
//! * Well-suited for scenarios where multiple components need to broadcast messages and the latest data takes priority.
//! * Ideal when heap allocation is necessary or desirable.
//! * Receivers must be fast enough to keep up with the senders and avoid losing messages due to overwriting.
use core::mem::ManuallyDrop;
use crate::{
core_impl, unpack_data_index, AtomicUsize, MaybeUninit, Node, Ordering, ReaderData, MAX_LEN,
};
struct InnerChannel<T, const N: usize> {
buffer: [Node<T>; N],
head: AtomicUsize,
}
impl<T: Clone + Sized, const N: usize> InnerChannel<T, N> {
const fn new() -> Self {
// Create an uninitialized array of `MaybeUninit`. The `assume_init` is
// safe because the type we are claiming to have initialized here is a
// bunch of `MaybeUninit`s, which do not require initialization
let mut uninit_buffer: [MaybeUninit<Node<T>>; N] =
unsafe { MaybeUninit::uninit().assume_init() };
let mut i = 0;
while i < N {
uninit_buffer[i] = MaybeUninit::new(Node::<T>::empty());
i += 1;
}
// Safety: we have initialized all the elements
// This transmute_copy will copy again, not sure if it can be optimized by the compiler
// but this is still an open issue (transmute doesn't work): https://github.com/rust-lang/rust/issues/61956
// or use `MaybeUninit::array_assume_init` when it is stabilized
#[repr(C)]
union InitializedData<T, const N: usize> {
uninit: ManuallyDrop<[MaybeUninit<Node<T>>; N]>,
init: ManuallyDrop<[Node<T>; N]>,
}
let buffer = ManuallyDrop::into_inner(unsafe {
InitializedData {
uninit: ManuallyDrop::new(uninit_buffer),
}
.init
});
Self {
buffer,
head: AtomicUsize::new(0),
}
}
fn push(&self, value: T) {
core_impl::push(&self.buffer, &self.head, value);
}
fn pop(&self, reader: &mut ReaderData) -> Option<T> {
core_impl::pop(&self.buffer, &self.head, reader)
}
}
/// The sender of the channel.
///
/// This is a the main channel component, as this is stored in static memory,
/// The `Sender` is the owner of the memory.
/// You can use it from multiple locations by storing it in a `static` variable.
///
/// `static_mem` doesn't have something like [`channel`](crate::alloc::channel) function,
/// Because, we don't have heap to store the Sender and give you an [`Arc`](https://doc.rust-lang.org/std/sync/struct.Arc.html)
/// to clone it. So, the user has to create the `receiver` from the `sender` manually.
///
/// Use [`new_receiver`](Sender::new_receiver) to create a receiver.
/// It will start from the same point as the sender.
///
/// Broadcast messages sent by using the [`send`](Sender::send) method.
///
/// # Examples
/// ```
/// # #[cfg(not(loom))]
/// # {
/// use blinkcast::static_mem::Sender;
///
/// let sender = Sender::<i32, 4>::new();
/// let mut receiver = sender.new_receiver();
///
/// sender.send(1);
/// sender.send(2);
///
/// assert_eq!(receiver.recv(), Some(1));
/// assert_eq!(receiver.recv(), Some(2));
/// assert_eq!(receiver.recv(), None);
/// # }
/// ```
pub struct Sender<T, const N: usize> {
queue: InnerChannel<T, N>,
}
unsafe impl<T: Clone + Send, const N: usize> Send for Sender<T, N> {}
unsafe impl<T: Clone + Send, const N: usize> Sync for Sender<T, N> {}
impl<T: Clone, const N: usize> Sender<T, N> {
/// Sends a message to the channel.
/// If the channel is full, the oldest message will be overwritten.
/// So the receiver must be quick or it will lose the old data.
pub fn send(&self, value: T) {
self.queue.push(value);
}
/// Creates a new channel with a buffer of size `N`.
pub const fn new() -> Self {
// TODO: use const_assert to check if N is a power of 2
assert!(N <= MAX_LEN, "Exceeded the maximum length");
Self {
queue: InnerChannel::<T, N>::new(),
}
}
/// Creates a new receiver that starts from the same point as the sender.
///
/// # Examples
/// ```
/// # #[cfg(not(loom))]
/// # {
/// use blinkcast::static_mem::Sender;
///
/// let sender = Sender::<i32, 4>::new();
///
/// sender.send(1);
///
/// let mut receiver = sender.new_receiver();
/// assert_eq!(receiver.recv(), None);
///
/// sender.send(2);
/// assert_eq!(receiver.recv(), Some(2));
/// assert_eq!(receiver.recv(), None);
/// # }
/// ```
pub fn new_receiver(&self) -> Receiver<'_, T, N> {
let head = self.queue.head.load(Ordering::Relaxed);
let (lap, index) = unpack_data_index(head);
Receiver {
queue: &self.queue,
reader: ReaderData { index, lap },
}
}
}
impl<T: Clone, const N: usize> Default for Sender<T, N> {
fn default() -> Self {
Self::new()
}
}
/// The receiver of the channel.
///
/// Can be created with the [`new_receiver`](Sender::new_receiver) method of the [`Sender`].
///
/// This is a cloneable receiver, so you can have multiple receivers that start from the same
/// point.
///
/// Broadcast messages sent by the channel are received by the [`recv`](Receiver::recv) method.
///
/// # Examples
/// ```
/// # #[cfg(not(loom))]
/// # {
/// use blinkcast::static_mem::Sender;
///
/// let sender = Sender::<i32, 4>::new();
/// let mut receiver = sender.new_receiver();
///
/// sender.send(1);
/// assert_eq!(receiver.recv(), Some(1));
///
/// sender.send(2);
/// sender.send(3);
///
/// assert_eq!(receiver.recv(), Some(2));
///
/// // clone the receiver
/// let mut receiver2 = receiver.clone();
/// assert_eq!(receiver.recv(), Some(3));
/// assert_eq!(receiver2.recv(), Some(3));
/// assert_eq!(receiver.recv(), None);
/// assert_eq!(receiver2.recv(), None);
/// # }
/// ```
pub struct Receiver<'a, T, const N: usize> {
queue: &'a InnerChannel<T, N>,
reader: ReaderData,
}
unsafe impl<T: Clone + Send, const N: usize> Send for Receiver<'_, T, N> {}
unsafe impl<T: Clone + Send, const N: usize> Sync for Receiver<'_, T, N> {}
impl<T: Clone, const N: usize> Receiver<'_, T, N> {
/// Receives a message from the channel.
///
/// If there is no message available, this method will return `None`.
pub fn recv(&mut self) -> Option<T> {
self.queue.pop(&mut self.reader)
}
}
impl<T: Clone, const N: usize> Clone for Receiver<'_, T, N> {
fn clone(&self) -> Self {
Self {
queue: self.queue,
reader: self.reader.clone(),
}
}
}