1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
use alloc::string::String;
use alloc::sync::Arc;
use alloc::vec::Vec;
use fallible_iterator::FallibleIterator;
use gimli::{EndianSlice, LittleEndian};

use crate::arch::Arch;
use crate::cache::{AllocationPolicy, Cache};
use crate::dwarf::{DwarfCfiIndex, DwarfUnwinder, DwarfUnwinding, UnwindSectionType};
use crate::error::{Error, UnwinderError};
use crate::instruction_analysis::InstructionAnalysis;

#[cfg(feature = "macho")]
use crate::macho::{
    CompactUnwindInfoUnwinder, CompactUnwindInfoUnwinding, CuiUnwindResult, TextBytes,
};
#[cfg(feature = "pe")]
use crate::pe::{DataAtRvaRange, PeUnwinding};
use crate::rule_cache::CacheResult;
use crate::unwind_result::UnwindResult;
use crate::unwind_rule::UnwindRule;
use crate::FrameAddress;

use core::marker::PhantomData;
use core::ops::{Deref, Range};
use core::sync::atomic::{AtomicU16, Ordering};

/// Unwinder is the trait that each CPU architecture's concrete unwinder type implements.
/// This trait's methods are what let you do the actual unwinding.
pub trait Unwinder: Clone {
    /// The unwind registers type for the targeted CPU architecture.
    type UnwindRegs;

    /// The unwind cache for the targeted CPU architecture.
    /// This is an associated type because the cache stores unwind rules, whose concrete
    /// type depends on the CPU arch, and because the cache can support different allocation
    /// policies.
    type Cache;

    /// The module type. This is an associated type because the concrete type varies
    /// depending on the type you use to give the module access to the unwind section data.
    type Module;

    /// Add a module that's loaded in the profiled process. This is how you provide unwind
    /// information and address ranges.
    ///
    /// This should be called whenever a new module is loaded into the process.
    fn add_module(&mut self, module: Self::Module);

    /// Remove a module that was added before using `add_module`, keyed by the start
    /// address of that module's address range. If no match is found, the call is ignored.
    /// This should be called whenever a module is unloaded from the process.
    fn remove_module(&mut self, module_avma_range_start: u64);

    /// Returns the highest code address that is known in this process based on the module
    /// address ranges. Returns 0 if no modules have been added.
    ///
    /// This method can be used together with
    /// [`PtrAuthMask::from_max_known_address`](crate::aarch64::PtrAuthMask::from_max_known_address)
    /// to make an educated guess at a pointer authentication mask for Aarch64 return addresses.
    fn max_known_code_address(&self) -> u64;

    /// Unwind a single frame, to recover return address and caller register values.
    /// This is the main entry point for unwinding.
    fn unwind_frame<F>(
        &self,
        address: FrameAddress,
        regs: &mut Self::UnwindRegs,
        cache: &mut Self::Cache,
        read_stack: &mut F,
    ) -> Result<Option<u64>, Error>
    where
        F: FnMut(u64) -> Result<u64, ()>;

    /// Return an iterator that unwinds frame by frame until the end of the stack is found.
    fn iter_frames<'u, 'c, 'r, F>(
        &'u self,
        pc: u64,
        regs: Self::UnwindRegs,
        cache: &'c mut Self::Cache,
        read_stack: &'r mut F,
    ) -> UnwindIterator<'u, 'c, 'r, Self, F>
    where
        F: FnMut(u64) -> Result<u64, ()>,
    {
        UnwindIterator::new(self, pc, regs, cache, read_stack)
    }
}

/// An iterator for unwinding the entire stack, starting from the initial register values.
///
/// The first yielded frame is the instruction pointer. Subsequent addresses are return
/// addresses.
///
/// This iterator attempts to detect if stack unwinding completed successfully, or if the
/// stack was truncated prematurely. If it thinks that it successfully found the root
/// function, it will complete with `Ok(None)`, otherwise it will complete with `Err(...)`.
/// However, the detection does not work in all cases, so you should expect `Err(...)` to
/// be returned even during normal operation. As a result, it is not recommended to use
/// this iterator as a `FallibleIterator`, because you might lose the entire stack if the
/// last iteration returns `Err(...)`.
///
/// Lifetimes:
///
///  - `'u`: The lifetime of the [`Unwinder`].
///  - `'c`: The lifetime of the unwinder cache.
///  - `'r`: The lifetime of the exclusive access to the `read_stack` callback.
pub struct UnwindIterator<'u, 'c, 'r, U: Unwinder + ?Sized, F: FnMut(u64) -> Result<u64, ()>> {
    unwinder: &'u U,
    state: UnwindIteratorState,
    regs: U::UnwindRegs,
    cache: &'c mut U::Cache,
    read_stack: &'r mut F,
}

enum UnwindIteratorState {
    Initial(u64),
    Unwinding(FrameAddress),
    Done,
}

impl<'u, 'c, 'r, U: Unwinder + ?Sized, F: FnMut(u64) -> Result<u64, ()>>
    UnwindIterator<'u, 'c, 'r, U, F>
{
    /// Create a new iterator. You'd usually use [`Unwinder::iter_frames`] instead.
    pub fn new(
        unwinder: &'u U,
        pc: u64,
        regs: U::UnwindRegs,
        cache: &'c mut U::Cache,
        read_stack: &'r mut F,
    ) -> Self {
        Self {
            unwinder,
            state: UnwindIteratorState::Initial(pc),
            regs,
            cache,
            read_stack,
        }
    }
}

impl<'u, 'c, 'r, U: Unwinder + ?Sized, F: FnMut(u64) -> Result<u64, ()>>
    UnwindIterator<'u, 'c, 'r, U, F>
{
    /// Yield the next frame in the stack.
    ///
    /// The first frame is `Ok(Some(FrameAddress::InstructionPointer(...)))`.
    /// Subsequent frames are `Ok(Some(FrameAddress::ReturnAddress(...)))`.
    ///
    /// If a root function has been reached, this iterator completes with `Ok(None)`.
    /// Otherwise it completes with `Err(...)`, usually indicating that a certain stack
    /// address could not be read.
    #[allow(clippy::should_implement_trait)]
    pub fn next(&mut self) -> Result<Option<FrameAddress>, Error> {
        let next = match self.state {
            UnwindIteratorState::Initial(pc) => {
                self.state = UnwindIteratorState::Unwinding(FrameAddress::InstructionPointer(pc));
                return Ok(Some(FrameAddress::InstructionPointer(pc)));
            }
            UnwindIteratorState::Unwinding(address) => {
                self.unwinder
                    .unwind_frame(address, &mut self.regs, self.cache, self.read_stack)?
            }
            UnwindIteratorState::Done => return Ok(None),
        };
        match next {
            Some(return_address) => {
                let return_address = FrameAddress::from_return_address(return_address)
                    .ok_or(Error::ReturnAddressIsNull)?;
                self.state = UnwindIteratorState::Unwinding(return_address);
                Ok(Some(return_address))
            }
            None => {
                self.state = UnwindIteratorState::Done;
                Ok(None)
            }
        }
    }
}

impl<'u, 'c, 'r, U: Unwinder + ?Sized, F: FnMut(u64) -> Result<u64, ()>> FallibleIterator
    for UnwindIterator<'u, 'c, 'r, U, F>
{
    type Item = FrameAddress;
    type Error = Error;

    fn next(&mut self) -> Result<Option<FrameAddress>, Error> {
        self.next()
    }
}

/// This global generation counter makes it so that the cache can be shared
/// between multiple unwinders.
/// This is a u16, so if you make it wrap around by adding / removing modules
/// more than 65535 times, then you risk collisions in the cache; meaning:
/// unwinding might not work properly if an old unwind rule was found in the
/// cache for the same address and the same (pre-wraparound) modules_generation.
static GLOBAL_MODULES_GENERATION: AtomicU16 = AtomicU16::new(0);

fn next_global_modules_generation() -> u16 {
    GLOBAL_MODULES_GENERATION.fetch_add(1, Ordering::Relaxed)
}

cfg_if::cfg_if! {
    if #[cfg(all(feature = "macho", feature = "pe"))] {
        pub trait Unwinding:
            Arch + DwarfUnwinding + InstructionAnalysis + CompactUnwindInfoUnwinding + PeUnwinding {}
        impl<T: Arch + DwarfUnwinding + InstructionAnalysis + CompactUnwindInfoUnwinding + PeUnwinding>
            Unwinding for T {}
    } else if #[cfg(feature = "macho")] {
        pub trait Unwinding:
            Arch + DwarfUnwinding + InstructionAnalysis + CompactUnwindInfoUnwinding {}
        impl<T: Arch + DwarfUnwinding + InstructionAnalysis + CompactUnwindInfoUnwinding> Unwinding for T {}
    } else if #[cfg(feature = "pe")] {
        pub trait Unwinding:
            Arch + DwarfUnwinding + InstructionAnalysis  + PeUnwinding {}
        impl<T: Arch + DwarfUnwinding + InstructionAnalysis + PeUnwinding> Unwinding for T {}
    } else {
        pub trait Unwinding: Arch + DwarfUnwinding + InstructionAnalysis {}
        impl<T: Arch + DwarfUnwinding + InstructionAnalysis> Unwinding for T {}
    }
}

pub struct UnwinderInternal<D, A, P> {
    /// sorted by avma_range.start
    modules: Vec<Module<D>>,
    /// Incremented every time modules is changed.
    modules_generation: u16,
    _arch: PhantomData<A>,
    _allocation_policy: PhantomData<P>,
}

impl<D, A, P> Default for UnwinderInternal<D, A, P> {
    fn default() -> Self {
        Self::new()
    }
}

impl<D, A, P> Clone for UnwinderInternal<D, A, P> {
    fn clone(&self) -> Self {
        Self {
            modules: self.modules.clone(),
            modules_generation: self.modules_generation,
            _arch: PhantomData,
            _allocation_policy: PhantomData,
        }
    }
}

impl<D, A, P> UnwinderInternal<D, A, P> {
    pub fn new() -> Self {
        Self {
            modules: Vec::new(),
            modules_generation: next_global_modules_generation(),
            _arch: PhantomData,
            _allocation_policy: PhantomData,
        }
    }
}

impl<D: Deref<Target = [u8]>, A: Unwinding, P: AllocationPolicy> UnwinderInternal<D, A, P> {
    pub fn add_module(&mut self, module: Module<D>) {
        let insertion_index = match self
            .modules
            .binary_search_by_key(&module.avma_range.start, |module| module.avma_range.start)
        {
            Ok(i) => {
                #[cfg(feature = "std")]
                eprintln!(
                    "Now we have two modules at the same start address 0x{:x}. This can't be good.",
                    module.avma_range.start
                );
                i
            }
            Err(i) => i,
        };
        self.modules.insert(insertion_index, module);
        self.modules_generation = next_global_modules_generation();
    }

    pub fn remove_module(&mut self, module_address_range_start: u64) {
        if let Ok(index) = self
            .modules
            .binary_search_by_key(&module_address_range_start, |module| {
                module.avma_range.start
            })
        {
            self.modules.remove(index);
            self.modules_generation = next_global_modules_generation();
        };
    }

    pub fn max_known_code_address(&self) -> u64 {
        self.modules.last().map_or(0, |m| m.avma_range.end)
    }

    fn find_module_for_address(&self, address: u64) -> Option<(usize, u32)> {
        let (module_index, module) = match self
            .modules
            .binary_search_by_key(&address, |m| m.avma_range.start)
        {
            Ok(i) => (i, &self.modules[i]),
            Err(insertion_index) => {
                if insertion_index == 0 {
                    // address is before first known module
                    return None;
                }
                let i = insertion_index - 1;
                let module = &self.modules[i];
                if module.avma_range.end <= address {
                    // address is after this module
                    return None;
                }
                (i, module)
            }
        };
        if address < module.base_avma {
            // Invalid base address
            return None;
        }
        let relative_address = u32::try_from(address - module.base_avma).ok()?;
        Some((module_index, relative_address))
    }

    fn with_cache<F, G>(
        &self,
        address: FrameAddress,
        regs: &mut A::UnwindRegs,
        cache: &mut Cache<A::UnwindRule, P>,
        read_stack: &mut F,
        callback: G,
    ) -> Result<Option<u64>, Error>
    where
        F: FnMut(u64) -> Result<u64, ()>,
        G: FnOnce(
            &Module<D>,
            FrameAddress,
            u32,
            &mut A::UnwindRegs,
            &mut Cache<A::UnwindRule, P>,
            &mut F,
        ) -> Result<UnwindResult<A::UnwindRule>, UnwinderError>,
    {
        let lookup_address = address.address_for_lookup();
        let is_first_frame = !address.is_return_address();
        let cache_handle = match cache
            .rule_cache
            .lookup(lookup_address, self.modules_generation)
        {
            CacheResult::Hit(unwind_rule) => {
                return unwind_rule.exec(is_first_frame, regs, read_stack);
            }
            CacheResult::Miss(handle) => handle,
        };

        let unwind_rule = match self.find_module_for_address(lookup_address) {
            None => A::UnwindRule::fallback_rule(),
            Some((module_index, relative_lookup_address)) => {
                let module = &self.modules[module_index];
                match callback(
                    module,
                    address,
                    relative_lookup_address,
                    regs,
                    cache,
                    read_stack,
                ) {
                    Ok(UnwindResult::ExecRule(rule)) => rule,
                    Ok(UnwindResult::Uncacheable(return_address)) => {
                        return Ok(Some(return_address))
                    }
                    Err(_err) => {
                        // eprintln!("Unwinder error: {}", err);
                        A::UnwindRule::fallback_rule()
                    }
                }
            }
        };
        cache.rule_cache.insert(cache_handle, unwind_rule);
        unwind_rule.exec(is_first_frame, regs, read_stack)
    }

    pub fn unwind_frame<F>(
        &self,
        address: FrameAddress,
        regs: &mut A::UnwindRegs,
        cache: &mut Cache<A::UnwindRule, P>,
        read_stack: &mut F,
    ) -> Result<Option<u64>, Error>
    where
        F: FnMut(u64) -> Result<u64, ()>,
    {
        self.with_cache(address, regs, cache, read_stack, Self::unwind_frame_impl)
    }

    fn unwind_frame_impl<F>(
        module: &Module<D>,
        address: FrameAddress,
        rel_lookup_address: u32,
        regs: &mut A::UnwindRegs,
        cache: &mut Cache<A::UnwindRule, P>,
        read_stack: &mut F,
    ) -> Result<UnwindResult<A::UnwindRule>, UnwinderError>
    where
        F: FnMut(u64) -> Result<u64, ()>,
    {
        let is_first_frame = !address.is_return_address();
        let unwind_result = match &*module.unwind_data {
            #[cfg(feature = "macho")]
            ModuleUnwindDataInternal::CompactUnwindInfoAndEhFrame {
                unwind_info,
                eh_frame,
                stubs_svma: stubs,
                stub_helper_svma: stub_helper,
                base_addresses,
                text_data,
            } => {
                // eprintln!("unwinding with cui and eh_frame in module {}", module.name);
                let text_bytes = text_data.as_ref().and_then(|data| {
                    let offset_from_base =
                        u32::try_from(data.svma_range.start.checked_sub(module.base_svma)?).ok()?;
                    Some(TextBytes::new(offset_from_base, &data.bytes[..]))
                });
                let stubs_range = if let Some(stubs_range) = stubs {
                    (
                        (stubs_range.start - module.base_svma) as u32,
                        (stubs_range.end - module.base_svma) as u32,
                    )
                } else {
                    (0, 0)
                };
                let stub_helper_range = if let Some(stub_helper_range) = stub_helper {
                    (
                        (stub_helper_range.start - module.base_svma) as u32,
                        (stub_helper_range.end - module.base_svma) as u32,
                    )
                } else {
                    (0, 0)
                };
                let mut unwinder = CompactUnwindInfoUnwinder::<A>::new(
                    &unwind_info[..],
                    text_bytes,
                    stubs_range,
                    stub_helper_range,
                );

                let unwind_result = unwinder.unwind_frame(rel_lookup_address, is_first_frame)?;
                match unwind_result {
                    CuiUnwindResult::ExecRule(rule) => UnwindResult::ExecRule(rule),
                    CuiUnwindResult::NeedDwarf(fde_offset) => {
                        let eh_frame_data =
                            eh_frame.as_deref().ok_or(UnwinderError::NoDwarfData)?;
                        let mut dwarf_unwinder = DwarfUnwinder::<_, A, _>::new(
                            EndianSlice::new(eh_frame_data, LittleEndian),
                            UnwindSectionType::EhFrame,
                            None,
                            &mut cache.gimli_unwind_context,
                            base_addresses.clone(),
                            module.base_svma,
                        );
                        dwarf_unwinder.unwind_frame_with_fde::<_, P::GimliEvaluationStorage<_>>(
                            regs,
                            is_first_frame,
                            rel_lookup_address,
                            fde_offset,
                            read_stack,
                        )?
                    }
                }
            }
            ModuleUnwindDataInternal::EhFrameHdrAndEhFrame {
                eh_frame_hdr,
                eh_frame,
                base_addresses,
            } => {
                let eh_frame_hdr_data = &eh_frame_hdr[..];
                let mut dwarf_unwinder = DwarfUnwinder::<_, A, _>::new(
                    EndianSlice::new(eh_frame, LittleEndian),
                    UnwindSectionType::EhFrame,
                    Some(eh_frame_hdr_data),
                    &mut cache.gimli_unwind_context,
                    base_addresses.clone(),
                    module.base_svma,
                );
                let fde_offset = dwarf_unwinder
                    .get_fde_offset_for_relative_address(rel_lookup_address)
                    .ok_or(UnwinderError::EhFrameHdrCouldNotFindAddress)?;
                dwarf_unwinder.unwind_frame_with_fde::<_, P::GimliEvaluationStorage<_>>(
                    regs,
                    is_first_frame,
                    rel_lookup_address,
                    fde_offset,
                    read_stack,
                )?
            }
            ModuleUnwindDataInternal::DwarfCfiIndexAndEhFrame {
                index,
                eh_frame,
                base_addresses,
            } => {
                let mut dwarf_unwinder = DwarfUnwinder::<_, A, _>::new(
                    EndianSlice::new(eh_frame, LittleEndian),
                    UnwindSectionType::EhFrame,
                    None,
                    &mut cache.gimli_unwind_context,
                    base_addresses.clone(),
                    module.base_svma,
                );
                let fde_offset = index
                    .fde_offset_for_relative_address(rel_lookup_address)
                    .ok_or(UnwinderError::DwarfCfiIndexCouldNotFindAddress)?;
                dwarf_unwinder.unwind_frame_with_fde::<_, P::GimliEvaluationStorage<_>>(
                    regs,
                    is_first_frame,
                    rel_lookup_address,
                    fde_offset,
                    read_stack,
                )?
            }
            ModuleUnwindDataInternal::DwarfCfiIndexAndDebugFrame {
                index,
                debug_frame,
                base_addresses,
            } => {
                let mut dwarf_unwinder = DwarfUnwinder::<_, A, _>::new(
                    EndianSlice::new(debug_frame, LittleEndian),
                    UnwindSectionType::DebugFrame,
                    None,
                    &mut cache.gimli_unwind_context,
                    base_addresses.clone(),
                    module.base_svma,
                );
                let fde_offset = index
                    .fde_offset_for_relative_address(rel_lookup_address)
                    .ok_or(UnwinderError::DwarfCfiIndexCouldNotFindAddress)?;
                dwarf_unwinder.unwind_frame_with_fde::<_, P::GimliEvaluationStorage<_>>(
                    regs,
                    is_first_frame,
                    rel_lookup_address,
                    fde_offset,
                    read_stack,
                )?
            }
            #[cfg(feature = "pe")]
            ModuleUnwindDataInternal::PeUnwindInfo {
                pdata,
                rdata,
                xdata,
                text,
            } => <A as PeUnwinding>::unwind_frame(
                crate::pe::PeSections {
                    pdata,
                    rdata: rdata.as_ref(),
                    xdata: xdata.as_ref(),
                    text: text.as_ref(),
                },
                rel_lookup_address,
                regs,
                is_first_frame,
                read_stack,
            )?,
            ModuleUnwindDataInternal::None => return Err(UnwinderError::NoModuleUnwindData),
        };
        Ok(unwind_result)
    }
}

/// The unwind data that should be used when unwinding addresses inside this module.
/// Unwind data describes how to recover register values of the caller frame.
///
/// The type of unwind information you use depends on the platform and what's available
/// in the binary.
///
/// Type arguments:
///
///  - `D`: The type for unwind section data. This allows carrying owned data on the
///    module, e.g. `Vec<u8>`. But it could also be a wrapper around mapped memory from
///    a file or a different process, for example. It just needs to provide a slice of
///    bytes via its `Deref` implementation.
enum ModuleUnwindDataInternal<D> {
    /// Used on macOS, with mach-O binaries. Compact unwind info is in the `__unwind_info`
    /// section and is sometimes supplemented with DWARF CFI information in the `__eh_frame`
    /// section. `__stubs` and `__stub_helper` ranges are used by the unwinder.
    #[cfg(feature = "macho")]
    CompactUnwindInfoAndEhFrame {
        unwind_info: D,
        eh_frame: Option<D>,
        stubs_svma: Option<Range<u64>>,
        stub_helper_svma: Option<Range<u64>>,
        base_addresses: crate::dwarf::BaseAddresses,
        text_data: Option<TextByteData<D>>,
    },
    /// Used with ELF binaries (Linux and friends), in the `.eh_frame_hdr` and `.eh_frame`
    /// sections. Contains an index and DWARF CFI.
    EhFrameHdrAndEhFrame {
        eh_frame_hdr: D,
        eh_frame: D,
        base_addresses: crate::dwarf::BaseAddresses,
    },
    /// Used with ELF binaries (Linux and friends), in the `.eh_frame` section. Contains
    /// DWARF CFI. We create a binary index for the FDEs when a module with this unwind
    /// data type is added.
    DwarfCfiIndexAndEhFrame {
        index: DwarfCfiIndex,
        eh_frame: D,
        base_addresses: crate::dwarf::BaseAddresses,
    },
    /// Used with ELF binaries (Linux and friends), in the `.debug_frame` section. Contains
    /// DWARF CFI. We create a binary index for the FDEs when a module with this unwind
    /// data type is added.
    DwarfCfiIndexAndDebugFrame {
        index: DwarfCfiIndex,
        debug_frame: D,
        base_addresses: crate::dwarf::BaseAddresses,
    },
    /// Used with PE binaries (Windows).
    #[cfg(feature = "pe")]
    PeUnwindInfo {
        pdata: D,
        rdata: Option<DataAtRvaRange<D>>,
        xdata: Option<DataAtRvaRange<D>>,
        text: Option<DataAtRvaRange<D>>,
    },
    /// No unwind information is used. Unwinding in this module will use a fallback rule
    /// (usually frame pointer unwinding).
    None,
}

impl<D: Deref<Target = [u8]>> ModuleUnwindDataInternal<D> {
    fn new(section_info: &mut impl ModuleSectionInfo<D>) -> Self {
        use crate::dwarf::base_addresses_for_sections;

        #[cfg(feature = "macho")]
        if let Some(unwind_info) = section_info.section_data(b"__unwind_info") {
            let eh_frame = section_info.section_data(b"__eh_frame");
            let stubs = section_info.section_svma_range(b"__stubs");
            let stub_helper = section_info.section_svma_range(b"__stub_helper");
            // Get the bytes of the executable code (instructions).
            //
            // In mach-O objects, executable code is stored in the `__TEXT` segment, which contains
            // multiple executable sections such as `__text`, `__stubs`, and `__stub_helper`. If we
            // don't have the full `__TEXT` segment contents, we can fall back to the contents of
            // just the `__text` section.
            let text_data = if let (Some(bytes), Some(svma_range)) = (
                section_info.segment_data(b"__TEXT"),
                section_info.segment_svma_range(b"__TEXT"),
            ) {
                Some(TextByteData { bytes, svma_range })
            } else if let (Some(bytes), Some(svma_range)) = (
                section_info.section_data(b"__text"),
                section_info.section_svma_range(b"__text"),
            ) {
                Some(TextByteData { bytes, svma_range })
            } else {
                None
            };
            return ModuleUnwindDataInternal::CompactUnwindInfoAndEhFrame {
                unwind_info,
                eh_frame,
                stubs_svma: stubs,
                stub_helper_svma: stub_helper,
                base_addresses: base_addresses_for_sections(section_info),
                text_data,
            };
        }

        #[cfg(feature = "pe")]
        if let Some(pdata) = section_info.section_data(b".pdata") {
            let mut range_and_data = |name| {
                let rva_range = section_info.section_svma_range(name).and_then(|range| {
                    Some(Range {
                        start: (range.start - section_info.base_svma()).try_into().ok()?,
                        end: (range.end - section_info.base_svma()).try_into().ok()?,
                    })
                })?;
                let data = section_info.section_data(name)?;
                Some(DataAtRvaRange { data, rva_range })
            };
            return ModuleUnwindDataInternal::PeUnwindInfo {
                pdata,
                rdata: range_and_data(b".rdata"),
                xdata: range_and_data(b".xdata"),
                text: range_and_data(b".text"),
            };
        }

        if let Some(eh_frame) = section_info
            .section_data(b".eh_frame")
            .or_else(|| section_info.section_data(b"__eh_frame"))
        {
            if let Some(eh_frame_hdr) = section_info
                .section_data(b".eh_frame_hdr")
                .or_else(|| section_info.section_data(b"__eh_frame_hdr"))
            {
                ModuleUnwindDataInternal::EhFrameHdrAndEhFrame {
                    eh_frame_hdr,
                    eh_frame,
                    base_addresses: base_addresses_for_sections(section_info),
                }
            } else {
                match DwarfCfiIndex::try_new_eh_frame(&eh_frame, section_info) {
                    Ok(index) => ModuleUnwindDataInternal::DwarfCfiIndexAndEhFrame {
                        index,
                        eh_frame,
                        base_addresses: base_addresses_for_sections(section_info),
                    },
                    Err(_) => ModuleUnwindDataInternal::None,
                }
            }
        } else if let Some(debug_frame) = section_info.section_data(b".debug_frame") {
            match DwarfCfiIndex::try_new_debug_frame(&debug_frame, section_info) {
                Ok(index) => ModuleUnwindDataInternal::DwarfCfiIndexAndDebugFrame {
                    index,
                    debug_frame,
                    base_addresses: base_addresses_for_sections(section_info),
                },
                Err(_) => ModuleUnwindDataInternal::None,
            }
        } else {
            ModuleUnwindDataInternal::None
        }
    }
}

/// Used to supply raw instruction bytes to the unwinder, which uses it to analyze
/// instructions in order to provide high quality unwinding inside function prologues and
/// epilogues.
///
/// This is only needed on macOS, because mach-O `__unwind_info` and `__eh_frame` only
/// cares about accuracy in function bodies, not in function prologues and epilogues.
///
/// On Linux, compilers produce `.eh_frame` and `.debug_frame` which provides correct
/// unwind information for all instructions including those in function prologues and
/// epilogues, so instruction analysis is not needed.
///
/// Type arguments:
///
///  - `D`: The type for unwind section data. This allows carrying owned data on the
///    module, e.g. `Vec<u8>`. But it could also be a wrapper around mapped memory from
///    a file or a different process, for example. It just needs to provide a slice of
///    bytes via its `Deref` implementation.
#[cfg(feature = "macho")]
struct TextByteData<D> {
    pub bytes: D,
    pub svma_range: Range<u64>,
}

/// Information about a module that is loaded in a process. You might know this under a
/// different name, for example: (Shared) library, binary image, DSO ("Dynamic shared object")
///
/// The unwinder needs to have an up-to-date list of modules so that it can match an
/// absolute address to the right module, and so that it can find that module's unwind
/// information.
///
/// Type arguments:
///
///  - `D`: The type for unwind section data. This allows carrying owned data on the
///    module, e.g. `Vec<u8>`. But it could also be a wrapper around mapped memory from
///    a file or a different process, for example. It just needs to provide a slice of
///    bytes via its `Deref` implementation.
pub struct Module<D> {
    /// The name or file path of the module. Unused, it's just there for easier debugging.
    #[allow(unused)]
    name: String,
    /// The address range where this module is mapped into the process.
    avma_range: Range<u64>,
    /// The base address of this module, in the process's address space. On Linux, the base
    /// address can sometimes be different from the start address of the mapped range.
    base_avma: u64,
    /// The base address of this module, according to the module.
    base_svma: u64,
    /// The unwind data that should be used for unwinding addresses from this module.
    unwind_data: Arc<ModuleUnwindDataInternal<D>>,
}

impl<D> Clone for Module<D> {
    fn clone(&self) -> Self {
        Self {
            name: self.name.clone(),
            avma_range: self.avma_range.clone(),
            base_avma: self.base_avma,
            base_svma: self.base_svma,
            unwind_data: self.unwind_data.clone(),
        }
    }
}

/// Information about a module's sections (and segments).
///
/// This trait is used as an interface to module information, and each function with `&mut self` is
/// called at most once with a particular argument (e.g., `section_data(b".text")` will be called
/// at most once, so it can move data out of the underlying type if desired).
///
/// Type arguments:
///
///  - `D`: The type for section data. This allows carrying owned data on the module, e.g.
///    `Vec<u8>`. But it could also be a wrapper around mapped memory from a file or a different
///    process, for example.
pub trait ModuleSectionInfo<D> {
    /// Return the base address stated in the module.
    ///
    /// For mach-O objects, this is the vmaddr of the __TEXT segment. For ELF objects, this is
    /// zero. For PE objects, this is the image base address.
    ///
    /// This is used to convert between SVMAs and relative addresses.
    fn base_svma(&self) -> u64;

    /// Get the given section's memory range, as stated in the module.
    fn section_svma_range(&mut self, name: &[u8]) -> Option<Range<u64>>;

    /// Get the given section's data. This will only be called once per section.
    fn section_data(&mut self, name: &[u8]) -> Option<D>;

    /// Get the given segment's memory range, as stated in the module.
    fn segment_svma_range(&mut self, _name: &[u8]) -> Option<Range<u64>> {
        None
    }

    /// Get the given segment's data. This will only be called once per segment.
    fn segment_data(&mut self, _name: &[u8]) -> Option<D> {
        None
    }
}

/// Explicit addresses and data of various sections in the module. This implements
/// the `ModuleSectionInfo` trait.
///
/// Unless otherwise stated, these are SVMAs, "stated virtual memory addresses", i.e. addresses as
/// stated in the object, as opposed to AVMAs, "actual virtual memory addresses", i.e. addresses in
/// the virtual memory of the profiled process.
///
/// Code addresses inside a module's unwind information are usually written down as SVMAs,
/// or as relative addresses. For example, DWARF CFI can have code addresses expressed as
/// relative-to-.text addresses or as absolute SVMAs. And mach-O compact unwind info
/// contains addresses relative to the image base address.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct ExplicitModuleSectionInfo<D> {
    /// The image base address, as stated in the object. For mach-O objects, this is the
    /// vmaddr of the `__TEXT` segment. For ELF objects, this is zero.
    ///
    /// This is used to convert between SVMAs and relative addresses.
    pub base_svma: u64,
    /// The address range of the `__text` or `.text` section. This is where most of the compiled
    /// code is stored.
    ///
    /// This is used to detect whether we need to do instruction analysis for an address.
    pub text_svma: Option<Range<u64>>,
    /// The data of the `__text` or `.text` section. This is where most of the compiled code is
    /// stored. For mach-O binaries, this does not need to be supplied if `text_segment` is supplied.
    ///
    /// This is used to handle function prologues and epilogues in some cases.
    pub text: Option<D>,
    /// The address range of the mach-O `__stubs` section. Contains small pieces of
    /// executable code for calling imported functions. Code inside this section is not
    /// covered by the unwind information in `__unwind_info`.
    ///
    /// This is used to exclude addresses in this section from incorrectly applying
    /// `__unwind_info` opcodes. It is also used to infer unwind rules for the known
    /// structure of stub functions.
    pub stubs_svma: Option<Range<u64>>,
    /// The address range of the mach-O `__stub_helper` section. Contains small pieces of
    /// executable code for calling imported functions. Code inside this section is not
    /// covered by the unwind information in `__unwind_info`.
    ///
    /// This is used to exclude addresses in this section from incorrectly applying
    /// `__unwind_info` opcodes. It is also used to infer unwind rules for the known
    /// structure of stub helper
    /// functions.
    pub stub_helper_svma: Option<Range<u64>>,
    /// The address range of the `.got` section (Global Offset Table). This is used
    /// during DWARF CFI processing, to resolve got-relative addresses.
    pub got_svma: Option<Range<u64>>,
    /// The data of the `__unwind_info` section of mach-O binaries.
    pub unwind_info: Option<D>,
    /// The address range of the `__eh_frame` or `.eh_frame` section. This is used during DWARF CFI
    /// processing, to resolve eh_frame-relative addresses.
    pub eh_frame_svma: Option<Range<u64>>,
    /// The data of the `__eh_frame` or `.eh_frame` section. This is used during DWARF CFI
    /// processing, to resolve eh_frame-relative addresses.
    pub eh_frame: Option<D>,
    /// The address range of the `.eh_frame_hdr` section. This is used during DWARF CFI processing,
    /// to resolve eh_frame_hdr-relative addresses.
    pub eh_frame_hdr_svma: Option<Range<u64>>,
    /// The data of the `.eh_frame_hdr` section. This is used during DWARF CFI processing, to
    /// resolve eh_frame_hdr-relative addresses.
    pub eh_frame_hdr: Option<D>,
    /// The data of the `.debug_frame` section. The related address range is not needed.
    pub debug_frame: Option<D>,
    /// The address range of the `__TEXT` segment of mach-O binaries, if available.
    pub text_segment_svma: Option<Range<u64>>,
    /// The data of the `__TEXT` segment of mach-O binaries, if available.
    pub text_segment: Option<D>,
}

impl<D> ModuleSectionInfo<D> for ExplicitModuleSectionInfo<D>
where
    D: Deref<Target = [u8]>,
{
    fn base_svma(&self) -> u64 {
        self.base_svma
    }

    fn section_svma_range(&mut self, name: &[u8]) -> Option<Range<u64>> {
        match name {
            b"__text" | b".text" => self.text_svma.clone(),
            b"__stubs" => self.stubs_svma.clone(),
            b"__stub_helper" => self.stub_helper_svma.clone(),
            b"__eh_frame" | b".eh_frame" => self.eh_frame_svma.clone(),
            b"__eh_frame_hdr" | b".eh_frame_hdr" => self.eh_frame_hdr_svma.clone(),
            b"__got" | b".got" => self.got_svma.clone(),
            _ => None,
        }
    }
    fn section_data(&mut self, name: &[u8]) -> Option<D> {
        match name {
            b"__text" | b".text" => self.text.take(),
            b"__unwind_info" => self.unwind_info.take(),
            b"__eh_frame" | b".eh_frame" => self.eh_frame.take(),
            b"__eh_frame_hdr" | b".eh_frame_hdr" => self.eh_frame_hdr.take(),
            b"__debug_frame" | b".debug_frame" => self.debug_frame.take(),
            _ => None,
        }
    }
    fn segment_svma_range(&mut self, name: &[u8]) -> Option<Range<u64>> {
        match name {
            b"__TEXT" => self.text_segment_svma.clone(),
            _ => None,
        }
    }
    fn segment_data(&mut self, name: &[u8]) -> Option<D> {
        match name {
            b"__TEXT" => self.text_segment.take(),
            _ => None,
        }
    }
}

#[cfg(feature = "object")]
mod object {
    use super::{ModuleSectionInfo, Range};
    use object::read::{Object, ObjectSection, ObjectSegment};

    impl<'data: 'file, 'file, O, D> ModuleSectionInfo<D> for &'file O
    where
        O: Object<'data>,
        D: From<&'data [u8]>,
    {
        fn base_svma(&self) -> u64 {
            if let Some(text_segment) = self.segments().find(|s| s.name() == Ok(Some("__TEXT"))) {
                // This is a mach-O image. "Relative addresses" are relative to the
                // vmaddr of the __TEXT segment.
                return text_segment.address();
            }

            // For PE binaries, relative_address_base() returns the image base address.
            // Otherwise it returns zero. This gives regular ELF images a base address of zero,
            // which is what we want.
            self.relative_address_base()
        }

        fn section_svma_range(&mut self, name: &[u8]) -> Option<Range<u64>> {
            let section = self.section_by_name_bytes(name)?;
            Some(section.address()..section.address() + section.size())
        }

        fn section_data(&mut self, name: &[u8]) -> Option<D> {
            let section = self.section_by_name_bytes(name)?;
            section.data().ok().map(|data| data.into())
        }

        fn segment_svma_range(&mut self, name: &[u8]) -> Option<Range<u64>> {
            let segment = self.segments().find(|s| s.name_bytes() == Ok(Some(name)))?;
            Some(segment.address()..segment.address() + segment.size())
        }

        fn segment_data(&mut self, name: &[u8]) -> Option<D> {
            let segment = self.segments().find(|s| s.name_bytes() == Ok(Some(name)))?;
            segment.data().ok().map(|data| data.into())
        }
    }
}

impl<D: Deref<Target = [u8]>> Module<D> {
    pub fn new(
        name: String,
        avma_range: core::ops::Range<u64>,
        base_avma: u64,
        mut section_info: impl ModuleSectionInfo<D>,
    ) -> Self {
        let unwind_data = ModuleUnwindDataInternal::new(&mut section_info);

        Self {
            name,
            avma_range,
            base_avma,
            base_svma: section_info.base_svma(),
            unwind_data: Arc::new(unwind_data),
        }
    }

    pub fn avma_range(&self) -> core::ops::Range<u64> {
        self.avma_range.clone()
    }

    pub fn base_avma(&self) -> u64 {
        self.base_avma
    }

    pub fn name(&self) -> &str {
        &self.name
    }
}