1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
use core::mem;
use crate::{is_aligned, HeapStats, PageAllocatorProvider};
use super::align_up;
const HEAP_MAGIC: u32 = 0xF0B0CAFE;
#[repr(C, align(16))]
struct AllocatedHeapBlockInfo {
magic: u32,
size: usize,
pre_padding: usize,
}
const KERNEL_HEAP_BLOCK_INFO_SIZE: usize = mem::size_of::<AllocatedHeapBlockInfo>();
#[derive(Debug)]
struct HeapFreeBlock {
prev: *mut HeapFreeBlock,
next: *mut HeapFreeBlock,
// including this header
size: usize,
}
pub struct HeapAllocator<const PAGE_SIZE: usize, T: PageAllocatorProvider<PAGE_SIZE>> {
heap_start: usize,
total_heap_size: usize,
free_list_addr: *mut HeapFreeBlock,
free_size: usize,
used_size: usize,
page_allocator: T,
}
unsafe impl<const PAGE_SIZE: usize, T: PageAllocatorProvider<PAGE_SIZE>> Send
for HeapAllocator<PAGE_SIZE, T>
{
}
impl<const PAGE_SIZE: usize, T> HeapAllocator<PAGE_SIZE, T>
where
T: PageAllocatorProvider<PAGE_SIZE>,
{
fn is_free_blocks_in_cycle(&self) -> bool {
// use floyd algorithm to detect if we are in cycle
let mut slow = self.free_list_addr;
let mut fast = self.free_list_addr;
// advance fast first
if fast.is_null() {
return false;
} else {
fast = unsafe { (*fast).next };
}
while fast != slow {
if fast.is_null() {
return false;
} else {
fast = unsafe { (*fast).next };
}
if fast.is_null() {
return false;
} else {
fast = unsafe { (*fast).next };
}
if slow.is_null() {
return false;
} else {
slow = unsafe { (*slow).next };
}
}
true
}
fn check_free_blocks(&self) -> bool {
let mut forward_count = 0;
let mut last: *mut HeapFreeBlock = core::ptr::null_mut();
for block in self.iter_free_blocks() {
forward_count += 1;
last = block as _;
}
let mut backward_count = 0;
if !last.is_null() {
// go back to the first block
while !last.is_null() {
backward_count += 1;
last = unsafe { (*last).prev };
}
}
forward_count != backward_count
}
fn check_issues(&self) -> bool {
self.is_free_blocks_in_cycle() || self.check_free_blocks()
}
fn get_free_block(&mut self, size: usize) -> *mut HeapFreeBlock {
if self.total_heap_size == 0 {
let size = align_up(size, PAGE_SIZE);
self.allocate_more_pages(size / PAGE_SIZE);
// call recursively
return self.get_free_block(size);
}
// find best block
let mut best_block: *mut HeapFreeBlock = core::ptr::null_mut();
for block in self.iter_free_blocks() {
if block.size >= size
&& (best_block.is_null() || block.size < unsafe { (*best_block).size })
{
best_block = block as _;
}
}
if best_block.is_null() {
// no block found, allocate more pages
let size = align_up(size, PAGE_SIZE);
self.allocate_more_pages(size / PAGE_SIZE);
// call recursively
return self.get_free_block(size);
}
best_block
}
fn iter_free_blocks(&self) -> impl Iterator<Item = &mut HeapFreeBlock> {
let mut current_block = self.free_list_addr;
core::iter::from_fn(move || {
if current_block.is_null() {
None
} else {
let block = current_block;
current_block = unsafe { (*current_block).next };
Some(unsafe { &mut *block })
}
})
}
/// Allocates more pages and add them to the free list
fn allocate_more_pages(&mut self, pages: usize) {
assert!(pages > 0);
let new_heap_start = if self.total_heap_size == 0 {
// first allocation
self.heap_start = self.page_allocator.allocate_pages(pages).unwrap() as usize;
self.heap_start
} else {
// allocate more pages
self.page_allocator.allocate_pages(pages).unwrap() as usize
};
self.total_heap_size += pages * PAGE_SIZE;
// add to the free list (fast path)
if self.free_list_addr.is_null() {
// no free list for now, add this as the very first free entry
let free_block = new_heap_start as *mut HeapFreeBlock;
unsafe {
(*free_block).prev = core::ptr::null_mut();
(*free_block).next = core::ptr::null_mut();
(*free_block).size = pages * PAGE_SIZE;
}
self.free_list_addr = free_block;
} else {
unsafe {
self.free_block(new_heap_start as _, pages * PAGE_SIZE);
}
}
self.free_size += pages * PAGE_SIZE;
}
unsafe fn free_block(&mut self, freeing_block: usize, size: usize) {
assert!(freeing_block <= self.heap_start + self.total_heap_size);
assert!(freeing_block + size <= self.heap_start + self.total_heap_size);
let freeing_block = freeing_block as *mut HeapFreeBlock;
let freeing_block_start = freeing_block as usize;
let freeing_block_end = freeing_block_start + size;
// find blocks that are either before or after this block
let mut prev_block: *mut HeapFreeBlock = core::ptr::null_mut();
let mut next_block: *mut HeapFreeBlock = core::ptr::null_mut();
let mut closest_prev_block: *mut HeapFreeBlock = core::ptr::null_mut();
for block in self.iter_free_blocks() {
let block_addr = block as *mut _ as usize;
let block_end = block_addr + block.size;
if block_addr == freeing_block_start {
// our block should not be in the free list
panic!("double free");
}
// assert that we are not in the middle of a block
assert!(
(freeing_block_end <= block_addr) || (freeing_block_start >= block_end),
"Free block at {:x}..{:x} is in the middle of another block at {:x}..{:x}",
freeing_block_start,
freeing_block_end,
block_addr,
block_end
);
if block_end == freeing_block_start {
// this block is before the freeing block
prev_block = block as _;
} else if freeing_block_end == block_addr {
// this block is after the freeing block
next_block = block as _;
}
if block_addr < freeing_block_start {
// this block is before the freeing block
if closest_prev_block.is_null() || block_addr > (closest_prev_block as usize) {
closest_prev_block = block as _;
}
}
}
if !prev_block.is_null() && !next_block.is_null() {
let new_block = prev_block;
// both are not null, so we are in the middle
// merge the blocks
(*new_block).size += size + (*next_block).size;
// update the previous block to point to this new subblock instead
if !(*next_block).next.is_null() {
(*(*next_block).next).prev = new_block;
}
if !(*next_block).prev.is_null() {
(*(*next_block).prev).next = new_block;
} else {
// this is the first block
self.free_list_addr = new_block;
}
(*new_block).next = (*next_block).next;
} else if !prev_block.is_null() {
// no blocks after this
// merge the blocks easily, we only need to change the size
(*prev_block).size += size;
} else if !next_block.is_null() {
let new_block = freeing_block;
// replace next with a new size
(*new_block).size = (*next_block).size + size;
(*new_block).prev = (*next_block).prev;
(*new_block).next = (*next_block).next;
// update references
// update the next block to point to this new subblock instead
if !(*next_block).next.is_null() {
(*(*next_block).next).prev = new_block;
}
// update the previous block to point to this new subblock instead
if !(*next_block).prev.is_null() {
(*(*next_block).prev).next = new_block;
} else {
// this is the first block
self.free_list_addr = new_block;
}
} else {
// no blocks around this
// add this to the free list in the correct order
if closest_prev_block.is_null() {
// this is the first block
(*freeing_block).prev = core::ptr::null_mut();
(*freeing_block).next = self.free_list_addr;
(*freeing_block).size = size;
// update the next block to point to this new subblock instead
if !(*freeing_block).next.is_null() {
(*(*freeing_block).next).prev = freeing_block;
}
self.free_list_addr = freeing_block;
} else {
// put this after the closest previous block
let closest_next_block = (*closest_prev_block).next;
(*freeing_block).prev = closest_prev_block;
(*freeing_block).next = closest_next_block;
(*freeing_block).size = size;
(*closest_prev_block).next = freeing_block;
if !closest_next_block.is_null() {
(*closest_next_block).prev = freeing_block;
}
}
}
}
}
// public interface
impl<const PAGE_SIZE: usize, T> HeapAllocator<PAGE_SIZE, T>
where
T: PageAllocatorProvider<PAGE_SIZE>,
{
pub fn new(page_allocator: T) -> Self {
Self {
heap_start: 0,
free_list_addr: core::ptr::null_mut(),
total_heap_size: 0,
free_size: 0,
used_size: 0,
page_allocator,
}
}
pub fn stats(&self) -> HeapStats {
HeapStats {
allocated: self.used_size,
free_size: self.free_size,
heap_size: self.total_heap_size,
}
}
pub fn debug_free_blocks(&self) -> impl Iterator<Item = (usize, usize)> + '_ {
self.iter_free_blocks()
.map(|block| (block as *mut _ as usize, block.size))
}
/// # Safety
/// Check [`core::alloc::GlobalAlloc::alloc`] for more info
pub unsafe fn alloc(&mut self, layout: core::alloc::Layout) -> *mut u8 {
// info header
let block_info_layout = core::alloc::Layout::new::<AllocatedHeapBlockInfo>();
// use minimum alignment AllocatedHeapBlockInfo
// whole_layout here is the layout of the requested block + the info header
// whole_block_offset is the offset of the block after the info header
let (whole_layout, block_offset_from_header) = block_info_layout
.extend(layout.align_to(block_info_layout.align()).unwrap())
.unwrap();
// at least align to AllocatedHeapBlockInfo (see above)
// `allocation_size` is the size of the block we are going to allocate as a whole
// this block include the info header and the requested block and maybe some padding
let mut allocation_size = whole_layout.pad_to_align().size();
let free_block = self.get_free_block(allocation_size);
if free_block.is_null() {
return core::ptr::null_mut();
}
// work on the pointer and add the info of the block before it, and handle alignment
// so, we can use it to deallocate later
let base = free_block as usize;
// this should never fail, we are allocating of `block_info_layout.align()` alignment always
assert!(is_aligned(base, block_info_layout.align()));
let possible_next_offset = align_up(base, layout.align()) - base;
let allocated_block_offset = if possible_next_offset < KERNEL_HEAP_BLOCK_INFO_SIZE {
// if we can't fit the info header, we need to add to the offset
possible_next_offset + KERNEL_HEAP_BLOCK_INFO_SIZE.max(layout.align())
} else {
possible_next_offset
};
assert!(allocated_block_offset >= KERNEL_HEAP_BLOCK_INFO_SIZE);
if allocated_block_offset > block_offset_from_header {
// we can exceed the calculated block sizes from the layout above, if that happens
// we must increase the allocation size to account for that
// this can happen when the alignment of the requested block is more than the info block
//
// example:
// requested layout: size=512, align=64
// info layout: size=32, align=16
// the above calculation `block_offset_from_header` will be 64
// the allocator, i.e. `free_block` will always be aligned to 16 (the info block)
// then, if the `possible_next_offset` happens to be 16, i.e. we are 48 bytes into a 64 bytes block
//
// [ 16 bytes ][ 16 bytes ][ 16 bytes ][ 16 bytes ]
// ^ <64 byte alignment> ^ free_block
//
// since 16 is less than 32, we need to add more offset, but `layout.size()` is 64. So we are going to
// add 80 (64 + 16) as the `allocated_block_offset`, but that already exceed `64`.
// the `allocation_size` before this fix would have been 512+64=576,
// but the actual size we need 512+80=592. That's why we need this fix.
// (as you might have expected, these numbers are from an actual bug I found and debugged -_-)
allocation_size += allocated_block_offset - block_offset_from_header;
}
let allocated_ptr = (free_block as *mut u8).add(allocated_block_offset);
let allocated_block_info =
allocated_ptr.sub(KERNEL_HEAP_BLOCK_INFO_SIZE) as *mut AllocatedHeapBlockInfo;
let free_block_size = (*free_block).size;
// for now, we hope we get enough size
// FIXME: get a new block if this is not enough
assert!(free_block_size >= allocation_size);
let free_block_end = free_block as usize + allocation_size;
let new_free_block = free_block_end as *mut HeapFreeBlock;
// we have to make sure that the block after us has enough space to write the metadata,
// and we won't corrupt the block that comes after (if there is any)
let required_safe_size = allocation_size + mem::size_of::<HeapFreeBlock>();
// store the actual size of the block
// if we needed to extend (since the next free block is to small)
// this will include the whole size and not just the size that
// we were asked to allocate
let mut this_allocation_size = allocation_size;
// do we have empty space left?
if free_block_size > required_safe_size {
// update the previous block to point to this new subblock instead
(*new_free_block).prev = (*free_block).prev;
(*new_free_block).next = (*free_block).next;
(*new_free_block).size = free_block_size - allocation_size;
// update the next block to point to this new subblock instead
if !(*new_free_block).next.is_null() {
(*(*new_free_block).next).prev = new_free_block;
}
// update the previous block to point to this new subblock instead
if !(*new_free_block).prev.is_null() {
(*(*new_free_block).prev).next = new_free_block;
} else {
// this is the first block
self.free_list_addr = new_free_block;
}
} else {
// exact size
this_allocation_size = free_block_size;
// update the previous block to point to the next block instead
if !(*free_block).prev.is_null() {
(*(*free_block).prev).next = (*free_block).next;
} else {
// this is the first block
self.free_list_addr = (*free_block).next;
}
if !(*free_block).next.is_null() {
(*(*free_block).next).prev = (*free_block).prev;
}
}
self.free_size -= this_allocation_size;
self.used_size += this_allocation_size;
// TODO: add flag to control when to enable this runtime checking
if self.check_issues() {
panic!("Found issues in `alloc`");
}
// make sure we are aligned
assert!(is_aligned(allocated_ptr as _, layout.align()),
"base_block={allocated_block_info:p}, offset={allocated_block_offset}, ptr={allocated_ptr:?}, layout={layout:?}, should_be_addr={:x}",
align_up(allocated_block_info as usize, layout.align()));
// write the info header
(*allocated_block_info).magic = HEAP_MAGIC;
(*allocated_block_info).size = this_allocation_size;
(*allocated_block_info).pre_padding = allocated_block_offset;
allocated_ptr
}
/// # Safety
/// Check [`core::alloc::GlobalAlloc::dealloc`] for more info
pub unsafe fn dealloc(&mut self, ptr: *mut u8, layout: core::alloc::Layout) {
assert!(!ptr.is_null());
// info header
let base_layout = core::alloc::Layout::new::<AllocatedHeapBlockInfo>();
let (whole_layout, _) = base_layout.extend(layout.align_to(16).unwrap()).unwrap();
let size_to_free_from_layout = whole_layout.pad_to_align().size();
let allocated_block_info =
ptr.sub(KERNEL_HEAP_BLOCK_INFO_SIZE) as *mut AllocatedHeapBlockInfo;
assert_eq!((*allocated_block_info).magic, HEAP_MAGIC);
// This could be more than the layout size, because
// we might increase the size of the block a bit to not leave
// free blocks that are too small (see `alloc``)
assert!((*allocated_block_info).size >= size_to_free_from_layout);
assert!((*allocated_block_info).pre_padding >= KERNEL_HEAP_BLOCK_INFO_SIZE);
let this_allocation_size = (*allocated_block_info).size;
let freeing_block = ptr.sub((*allocated_block_info).pre_padding) as usize;
self.free_block(freeing_block, this_allocation_size);
self.used_size -= this_allocation_size;
self.free_size += this_allocation_size;
// TODO: add flag to control when to enable this runtime checking
if self.check_issues() {
panic!("Found issues in `dealloc`");
}
}
}