1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
pub mod facp;

pub use facp::Facp;

use core::{
    any::Any,
    fmt,
    mem::{self, MaybeUninit},
    slice,
};

use alloc::{boxed::Box, vec::Vec};
use byteorder::{ByteOrder, LittleEndian};

use crate::{
    cmdline::{self, LogAml},
    io::{ByteStr, HexArray},
    memory_management::{memory_layout::physical2virtual, virtual_space::VirtualSpace},
    multiboot2::MultiBoot2Info,
    sync::once::OnceLock,
};

use super::aml::Aml;

const BIOS_RO_MEM_START: u64 = 0x000E0000;
const BIOS_RO_MEM_END: u64 = 0x000FFFFF;

/// # Safety
///
/// Must ensure the `physical_addr` is valid and point to correct DescriptionHeader
/// Must ensure that the `physical_address` is not used in virtual_space before calling this function
/// We are using `VirtualSpace` on low kernel addresses (i.e. already mapped by the kernel).
/// Accessing these addresses manually without `VirtualSpace` may lead to undefined behavior due to aliasing memory referenced by other code
unsafe fn get_acpi_table_bytes(physical_addr: u64) -> (DescriptionHeader, VirtualSpace<[u8]>) {
    let header = VirtualSpace::<DescriptionHeader>::new(physical_addr).expect("Failed to map");
    let len = header.length as usize;
    let header_copy = *header;
    drop(header);

    let data_start_phys = physical_addr + mem::size_of::<DescriptionHeader>() as u64;
    let data_len = len - mem::size_of::<DescriptionHeader>();

    let header_data =
        VirtualSpace::<u8>::new_slice(data_start_phys, data_len).expect("Failed to get slice");

    // check sum
    let sum = header_copy
        .sum()
        .wrapping_add(header_data.iter().fold(0u8, |acc, &x| acc.wrapping_add(x)));
    assert_eq!(sum, 0);

    // after this point, the header is valid and can be used safely
    (header_copy, header_data)
}

/// Will fill the table from the header data, and zero out remaining bytes if any are left
///
/// # Safety
/// the pointer must be valid and point to a valid table
/// Also, `<T>` must be valid when some parts of it is zero
unsafe fn get_table_from_body<T>(body: &[u8]) -> T {
    let mut our_data_value = MaybeUninit::zeroed();
    let out_data_slice =
        slice::from_raw_parts_mut(our_data_value.as_mut_ptr() as *mut u8, mem::size_of::<T>());
    out_data_slice[..body.len()].copy_from_slice(body);

    our_data_value.assume_init()
}

/// Will fill the table from the header data, and zero out remaining bytes if any are left
///
/// # Safety
///
/// type `<T>` must be valid when some parts of it is zero
///
/// TODO: should this be unsafe?
fn get_struct_from_bytes<T>(data: &[u8]) -> T {
    assert_eq!(data.len(), mem::size_of::<T>());

    let mut our_data_value = MaybeUninit::zeroed();
    // Safety: it is safe to create a slice of bytes for the struct, since we know the pointer is valid
    let out_data_slice = unsafe {
        slice::from_raw_parts_mut(our_data_value.as_mut_ptr() as *mut u8, mem::size_of::<T>())
    };
    out_data_slice.copy_from_slice(data);

    // Safety: we are sure that the data is valid, since we assume that in the function doc,
    // assured from the caller
    unsafe { our_data_value.assume_init() }
}

// cache the tables
static BIOS_TABLES: OnceLock<BiosTables> = OnceLock::new();

// Note: this requires allocation, so it should be called after the heap is initialized
pub fn init_acpi_tables(multiboot_info: &MultiBoot2Info) -> &'static BiosTables {
    BIOS_TABLES.get_or_init(|| {
        let rdsp = multiboot_info
            .get_most_recent_rsdp()
            .or_else(|| {
                // look for RSDP PTR
                // this is inside the kernel low virtual range, so we can just convert to virtual directly without allocating space
                let mut rsdp_ptr = physical2virtual(BIOS_RO_MEM_START) as *const u8;
                let end = physical2virtual(BIOS_RO_MEM_END) as *const u8;

                while rsdp_ptr < end {
                    // Safety: this is a valid mapped range, as we are sure that the kernel is
                    // mapped since boot and we are inside the kernel lower range
                    let str = unsafe { slice::from_raw_parts(rsdp_ptr, 8) };
                    if str == b"RSD PTR " {
                        // calculate checksum
                        // Safety: same as above, this pointer is mapped
                        let sum = unsafe {
                            slice::from_raw_parts(rsdp_ptr, 20)
                                .iter()
                                .fold(0u8, |acc, &x| acc.wrapping_add(x))
                        };
                        if sum == 0 {
                            // Safety: same as above, this pointer is mapped
                            let rsdp_ref = unsafe { &*(rsdp_ptr as *const RsdpV2) };
                            return if rsdp_ref.rsdp_v1.revision >= 2 {
                                Some(Rsdp::from_v2(rsdp_ref))
                            } else {
                                Some(Rsdp::from_v1(&rsdp_ref.rsdp_v1))
                            };
                        }
                    }
                    // Safety: same as above, this pointer is mapped
                    rsdp_ptr = unsafe { rsdp_ptr.add(1) };
                }

                None
            })
            .expect("No RSDP found");

        // Safety: this is called only once and we are sure no other call is using the ACPI memory
        unsafe { BiosTables::new(rdsp) }
    })
}

pub fn get_acpi_tables() -> &'static BiosTables {
    BIOS_TABLES.get()
}

#[repr(C, packed)]
pub struct RsdpV1 {
    signature: ByteStr<[u8; 8]>,
    checksum: u8,
    oem_id: ByteStr<[u8; 6]>,
    revision: u8,
    rsdt_address: u32,
}

// used to copy
#[repr(C, packed)]
pub struct RsdpV2 {
    rsdp_v1: RsdpV1,
    // these are only v2, but its here to make copying easier
    length: u32,
    xsdt_address: u64,
    extended_checksum: u8,
    reserved: [u8; 3],
}

/// Represent v2 and above
#[repr(C, packed)]
#[derive(Debug, Clone)]
pub struct Rsdp {
    pub signature: ByteStr<[u8; 8]>,
    pub checksum: u8,
    pub oem_id: ByteStr<[u8; 6]>,
    pub revision: u8,
    pub rsdt_address: u32,
    pub length: u32,
    pub xsdt_address: u64,
    pub extended_checksum: u8,
    pub reserved: [u8; 3],
}

impl Rsdp {
    pub fn from_v1(v0: &RsdpV1) -> Self {
        Self {
            signature: v0.signature,
            checksum: v0.checksum,
            oem_id: v0.oem_id,
            revision: v0.revision,
            rsdt_address: v0.rsdt_address,
            length: 0,
            xsdt_address: 0,
            extended_checksum: 0,
            reserved: [0; 3],
        }
    }

    pub fn from_v2(v2: &RsdpV2) -> Self {
        Self {
            signature: v2.rsdp_v1.signature,
            checksum: v2.rsdp_v1.checksum,
            oem_id: v2.rsdp_v1.oem_id,
            revision: v2.rsdp_v1.revision,
            rsdt_address: v2.rsdp_v1.rsdt_address,
            length: v2.length,
            xsdt_address: v2.xsdt_address,
            extended_checksum: v2.extended_checksum,
            reserved: v2.reserved,
        }
    }

    /// allocates a new RDST
    ///
    /// # Safety
    ///
    /// This should only be called once and not overlapping with any operation done to the region containing ACPI tables
    /// this uses virtual space for the regions that the `rsdt` is inside and all its other children structures
    unsafe fn rdst(&self) -> Rsdt {
        // Safety: here we are the first
        let (header, body_bytes) = get_acpi_table_bytes(self.rsdt_address as _);

        // we copy the addresses here, we can't sadly use iter to iterate over them since inside `from_physical_ptr` we need to be
        // sure that we don't own any references to the ACPI memory regions in the `VirtualSpace`
        let entries_ptrs = body_bytes
            .chunks(4)
            .map(|a| u32::from_le_bytes(a.try_into().unwrap()))
            .filter(|&a| a != 0)
            .collect::<Vec<_>>();

        // deallocate the virtual space memory, so we can use it again below if regions overlap
        drop(body_bytes);

        let entries = entries_ptrs
            .into_iter()
            // Safety: `from_physical_ptr` require we don't overlap usage of ACPI memory, we are `deallocating` the memory above
            //         before going into this function, and it will handle its own deallocation, so we are safe on that side
            .map(|p| unsafe { DescriptorTable::from_physical_ptr(p) })
            .collect();

        let mut s = Rsdt { header, entries };
        // add extra entries
        if let Some(facp) = s.get_table::<Facp>() {
            if facp.dsdt != 0 {
                // Safety: same as above, we are sure that we are not overlapping with any ACPI memory
                s.entries
                    .push(DescriptorTable::from_physical_ptr(facp.dsdt));
            }
        }

        s
    }
}

#[derive(Debug, Clone)]
pub struct Rsdt {
    pub header: DescriptionHeader,
    entries: Vec<DescriptorTable>,
}

impl Rsdt {
    pub fn get_table<T: Any>(&self) -> Option<&T> {
        self.entries
            .iter()
            .filter_map(|entry| match &entry.body {
                DescriptorTableBody::Unknown(_) => None,
                DescriptorTableBody::Apic(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Facp(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Hpet(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Dsdt(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Ssdt(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Bgrt(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Waet(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Srat(a) => Some(a.as_ref() as &dyn Any),
            })
            .find_map(|obj| obj.downcast_ref::<T>())
    }

    pub fn iter_tables<T: Any>(&self) -> impl Iterator<Item = &T> {
        self.entries
            .iter()
            .filter_map(|entry| match &entry.body {
                DescriptorTableBody::Unknown(_) => None,
                DescriptorTableBody::Apic(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Facp(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Hpet(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Dsdt(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Ssdt(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Bgrt(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Waet(a) => Some(a.as_ref() as &dyn Any),
                DescriptorTableBody::Srat(a) => Some(a.as_ref() as &dyn Any),
            })
            .filter_map(|obj| obj.downcast_ref::<T>())
    }
}

#[repr(C, packed)]
#[derive(Debug, Clone, Copy)]
pub struct DescriptionHeader {
    pub signature: ByteStr<[u8; 4]>,
    pub length: u32,
    pub revision: u8,
    pub checksum: u8,
    pub oem_id: ByteStr<[u8; 6]>,
    pub oem_table_id: ByteStr<[u8; 8]>,
    pub oem_revision: u32,
    pub creator_id: u32,
    pub creator_revision: u32,
}

impl DescriptionHeader {
    pub fn sum(&self) -> u8 {
        let mut sum = 0u8;
        let ptr = self as *const Self as *const u8;
        for i in 0..mem::size_of::<Self>() {
            sum = sum.wrapping_add(unsafe { ptr.add(i).read() });
        }
        sum
    }
}

#[derive(Debug, Clone)]
pub struct DescriptorTable {
    pub header: DescriptionHeader,
    pub body: DescriptorTableBody,
}

impl DescriptorTable {
    /// # Safety
    ///
    /// This should not overlap any reference to the ACPI memory, it will own a reference to virtual space
    /// that points to the physical address, and then yields the reference before it returns.
    /// Thus it must never be called concurrently as well
    pub unsafe fn from_physical_ptr(ptr: u32) -> Self {
        // Safety: here we are relying on the caller to ensure that the `ptr` is valid and no one is using ACPI memory
        let (header, body_bytes) = unsafe { get_acpi_table_bytes(ptr as _) };

        let body = match &header.signature.0 {
            b"APIC" => DescriptorTableBody::Apic(Box::new(Apic::from_body_bytes(&body_bytes))),
            b"FACP" => DescriptorTableBody::Facp(Box::new(get_table_from_body(&body_bytes))),
            b"HPET" => DescriptorTableBody::Hpet(Box::new(get_table_from_body(&body_bytes))),
            b"DSDT" => DescriptorTableBody::Dsdt(Box::new(Xsdt::from_body_bytes(&body_bytes))),
            b"SSDT" => DescriptorTableBody::Ssdt(Box::new(Xsdt::from_body_bytes(&body_bytes))),
            b"BGRT" => DescriptorTableBody::Bgrt(Box::new(get_table_from_body(&body_bytes))),
            b"WAET" => DescriptorTableBody::Waet(Box::new(get_table_from_body(&body_bytes))),
            b"SRAT" => DescriptorTableBody::Srat(Box::new(Srat::from_body_bytes(&body_bytes))),
            _ => DescriptorTableBody::Unknown(HexArray(body_bytes.to_vec())),
        };

        Self { header, body }
    }
}

#[derive(Debug, Clone)]
pub enum DescriptorTableBody {
    Apic(Box<Apic>),
    Facp(Box<Facp>),
    Hpet(Box<Hpet>),
    Dsdt(Box<Xsdt>),
    Ssdt(Box<Xsdt>),
    Bgrt(Box<Bgrt>),
    Waet(Box<Waet>),
    Srat(Box<Srat>),
    Unknown(HexArray<Vec<u8>>),
}

#[derive(Debug, Clone)]
pub struct Apic {
    pub local_apic_address: u32,
    pub flags: u32,
    pub interrupt_controller_structs: Vec<InterruptControllerStruct>,
}

impl Apic {
    /// # Safety
    /// the pointer must be valid and point to a valid table
    fn from_body_bytes(body: &[u8]) -> Self {
        let mut apic = Self {
            local_apic_address: LittleEndian::read_u32(body),
            flags: LittleEndian::read_u32(&body[4..]),
            interrupt_controller_structs: Vec::new(),
        };

        let mut remaining_body = &body[8..];
        let mut remaining = body.len() - 8;
        while remaining > 0 {
            let struct_type = remaining_body[0];
            let struct_len = remaining_body[1];
            let struct_bytes = &remaining_body[2..struct_len as usize];
            apic.interrupt_controller_structs
                .push(InterruptControllerStruct::from_type_and_bytes(
                    struct_type,
                    struct_bytes,
                ));
            remaining -= struct_len as usize;
            remaining_body = &remaining_body[struct_len as usize..];
        }
        apic
    }
}

#[repr(u8)]
#[derive(Debug, Clone)]
pub enum InterruptControllerStruct {
    ProcessorLocalApic(ProcessorLocalApic) = 0,
    IoApic(IoApic) = 1,
    InterruptSourceOverride(InterruptSourceOverride) = 2,
    NonMaskableInterrupt(NonMaskableInterrupt) = 3,
    LocalApicNmi(LocalApicNmi) = 4,
    LocalApicAddressOverride(LocalApicAddressOverride) = 5,
    Unknown {
        struct_type: u8,
        bytes: HexArray<Vec<u8>>,
    } = 255,
}

impl InterruptControllerStruct {
    fn from_type_and_bytes(struct_type: u8, bytes: &[u8]) -> Self {
        match struct_type {
            0 => Self::ProcessorLocalApic(get_struct_from_bytes(bytes)),
            1 => Self::IoApic(get_struct_from_bytes(bytes)),
            2 => Self::InterruptSourceOverride(get_struct_from_bytes(bytes)),
            3 => Self::NonMaskableInterrupt(get_struct_from_bytes(bytes)),
            4 => Self::LocalApicNmi(get_struct_from_bytes(bytes)),
            5 => Self::LocalApicAddressOverride(get_struct_from_bytes(bytes)),
            _ => Self::Unknown {
                struct_type,
                bytes: HexArray(bytes.to_vec()),
            },
        }
    }
}

// extract enum into outside structs
#[repr(C, packed)]
#[derive(Debug, Clone)]
pub struct ProcessorLocalApic {
    pub acpi_processor_id: u8,
    pub apic_id: u8,
    pub flags: u32,
}

#[repr(C, packed)]
#[derive(Debug, Clone)]
pub struct IoApic {
    pub io_apic_id: u8,
    pub reserved: u8,
    pub io_apic_address: u32,
    pub global_system_interrupt_base: u32,
}

#[repr(C, packed)]
#[derive(Debug, Clone)]
pub struct InterruptSourceOverride {
    pub bus: u8,
    pub source: u8,
    pub global_system_interrupt: u32,
    pub flags: u16,
}

#[repr(C, packed)]
#[derive(Debug, Clone)]
pub struct NonMaskableInterrupt {
    pub flags: u16,
    pub global_system_interrupt: u32,
}

#[repr(C, packed)]
#[derive(Debug, Clone)]
pub struct LocalApicNmi {
    pub acpi_processor_uid: u8,
    pub flags: u16,
    pub local_apic_lint: u8,
}

#[repr(C, packed)]
#[derive(Debug, Clone)]
pub struct LocalApicAddressOverride {
    pub reserved: u16,
    pub local_apic_address: u64,
}

#[derive(Debug, Clone, Copy)]
#[repr(C, packed)]
pub struct ApicGenericAddress {
    pub address_space_id: u8,
    pub register_bit_width: u8,
    pub register_bit_offset: u8,
    pub reserved: u8,
    pub address: u64,
}
impl ApicGenericAddress {
    fn is_zero(&self) -> bool {
        self.address == 0
            && self.address_space_id == 0
            && self.register_bit_offset == 0
            && self.register_bit_width == 0
            && self.reserved == 0
    }
}

#[repr(C, packed)]
#[derive(Debug, Clone)]
pub struct Hpet {
    pub event_timer_block_id: u32,
    pub base_address: ApicGenericAddress,
    pub hpet_number: u8,
    pub main_counter_minimum_clock_tick: u16,
    pub page_protection: u8,
}

#[derive(Debug, Clone)]
#[allow(dead_code)]
/// This is inside DSDT and SSDT
pub struct Xsdt {
    pub aml: Aml,
}

impl Xsdt {
    fn from_body_bytes(body: &[u8]) -> Self {
        let aml_code = Aml::parse(body).unwrap();
        Self { aml: aml_code }
    }
}

#[derive(Debug, Clone)]
#[repr(C, packed)]
pub struct Bgrt {
    version: u16,
    status: u8,
    image_type: u8,
    pub image_address: u64,
    pub image_offset_x: u32,
    pub image_offset_y: u32,
}

#[derive(Debug, Clone)]
#[allow(dead_code)]
pub struct Waet {
    emulated_device_flags: u32,
}

#[derive(Debug, Clone)]
#[allow(dead_code)]
pub struct Srat {
    reserved1: u32,
    reserved2: u64,
    static_resource_allocation: Vec<StaticResourceAffinity>,
}

impl Srat {
    fn from_body_bytes(body: &[u8]) -> Self {
        let mut srat = Self {
            reserved1: LittleEndian::read_u32(body),
            reserved2: LittleEndian::read_u64(&body[4..]),
            static_resource_allocation: Vec::new(),
        };

        let mut remaining_body = &body[12..];

        let mut remaining = body.len() - 12;
        while remaining > 0 {
            let struct_type = remaining_body[0];
            let struct_len = remaining_body[1];
            let struct_bytes = &remaining_body[2..struct_len as usize];
            srat.static_resource_allocation
                .push(StaticResourceAffinity::from_type_and_bytes(
                    struct_type,
                    struct_bytes,
                ));
            remaining -= struct_len as usize;
            remaining_body = &remaining_body[struct_len as usize..];
        }
        srat
    }
}

#[repr(u8)]
#[derive(Debug, Clone)]
#[allow(dead_code)]
pub enum StaticResourceAffinity {
    ProcessorLocalAcpi(ProcessorLocalAcpiAffinity) = 0,
    MemoryAffinity(MemoryAffinity) = 1,
    ProcessorLocalX2Apic(ProcessorLocalX2ApicAffinity) = 2,
    GiccAffinity(GiccAffinity) = 3,
    GicInterruptTranslationService(GicInterruptTranslationServiceAffinity) = 4,
    GenericInitiatorAffinity(GenericInitiatorAffinity) = 5,
    Unknown {
        struct_type: u8,
        bytes: HexArray<Vec<u8>>,
    } = 255,
}

impl StaticResourceAffinity {
    fn from_type_and_bytes(struct_type: u8, bytes: &[u8]) -> Self {
        match struct_type {
            0 => Self::ProcessorLocalAcpi(get_struct_from_bytes(bytes)),
            1 => Self::MemoryAffinity(get_struct_from_bytes(bytes)),
            2 => Self::ProcessorLocalX2Apic(get_struct_from_bytes(bytes)),
            3 => Self::GiccAffinity(get_struct_from_bytes(bytes)),
            4 => Self::GicInterruptTranslationService(get_struct_from_bytes(bytes)),
            5 => Self::GenericInitiatorAffinity(get_struct_from_bytes(bytes)),
            _ => Self::Unknown {
                struct_type,
                bytes: HexArray(bytes.to_vec()),
            },
        }
    }
}

#[derive(Debug, Clone)]
#[repr(C, packed)]
pub struct ProcessorLocalAcpiAffinity {
    proximity_domain_low: u8,
    apic_id: u8,
    flags: u32,
    local_sapic_eid: u8,
    proximity_domain_high: [u8; 3],
    clock_domain: u32,
}

#[derive(Debug, Clone)]
#[repr(C, packed)]
pub struct MemoryAffinity {
    proximity_domain: u32,
    reserved1: u16,
    base_address_low: u32,
    base_address_high: u32,
    length_low: u32,
    length_high: u32,
    reserved2: u32,
    flags: u32,
    reserved3: u64,
}

#[derive(Debug, Clone)]
#[repr(C, packed)]
pub struct ProcessorLocalX2ApicAffinity {
    reserved1: u16,
    proximity_domain: u32,
    x2apic_id: u32,
    flags: u32,
    clock_domain: u32,
    reserved2: u32,
}

#[derive(Debug, Clone)]
#[repr(C, packed)]
pub struct GiccAffinity {
    proximity_domain: u32,
    acpi_processor_uid: u32,
    flags: u32,
    clock_domain: u32,
}

#[derive(Debug, Clone)]
#[repr(C, packed)]
pub struct GicInterruptTranslationServiceAffinity {
    proximity_domain: u32,
    reserved1: u16,
    its_id: u32,
}

#[derive(Debug, Clone)]
#[repr(C, packed)]
pub struct GenericInitiatorAffinity {
    reserved1: u8,
    device_handle_type: u8,
    proximity_domain: u32,
    device_handle: [u8; 16],
    flags: u32,
    reserved2: u32,
}

#[derive(Debug, Clone)]
pub struct BiosTables {
    pub rsdp: Rsdp,
    pub rsdt: Rsdt,
}

impl BiosTables {
    /// # Safety
    ///
    /// This should only be called once and not overlapping with any operation done to the region containing ACPI tables
    pub unsafe fn new(rsdp: Rsdp) -> Self {
        Self {
            rsdt: rsdp.rdst(),
            rsdp,
        }
    }
}

impl fmt::Display for BiosTables {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "RSDP: {:X?}", self.rsdp)?;
        writeln!(f, "RSDT: {:X?}", self.rsdt.header)?;
        for entry in &self.rsdt.entries {
            match &entry.body {
                DescriptorTableBody::Dsdt(data) | DescriptorTableBody::Ssdt(data) => {
                    writeln!(f, "{:X?}", entry.header)?;

                    match cmdline::cmdline().log_aml {
                        LogAml::Normal => {
                            writeln!(f, "AML: \n{:#}", data.aml.code())?;
                        }
                        LogAml::Structured => {
                            writeln!(f, "AML: \n{:#}", data.aml.structured())?;
                        }
                        LogAml::Off => {}
                    }
                }
                DescriptorTableBody::Unknown(_) => {
                    writeln!(f, "  {:X?}", entry.header)?;
                    writeln!(f, "  {:X?}", entry.body)?;
                }
                _ => {
                    writeln!(f, "{:X?}", entry.body)?;
                }
            }
        }
        Ok(())
    }
}