1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
use alloc::sync::Arc;
use tracing::warn;

use crate::{
    acpi,
    cpu::{
        self,
        idt::{InterruptAllSavedState, InterruptHandlerWithAllState},
        interrupts::apic,
    },
    devices::clock::{hardware_timer::pit, ClockTime, FEMTOS_PER_SEC, NANOS_PER_FEMTO},
    memory_management::virtual_space::VirtualSpace,
    sync::{once::OnceLock, spin::mutex::Mutex},
    utils::vcell::{RO, RW, WO},
};

use super::super::ClockDevice;

static HPET_CLOCK: OnceLock<Arc<Mutex<Hpet>>> = OnceLock::new();

pub fn init(hpet_table: &acpi::tables::Hpet) -> Arc<Mutex<Hpet>> {
    // make sure we don't get interrupted before `HPET_CLOCK`
    // is initialized
    cpu::cpu().push_cli();

    // just to make sure that we don't initialize it twice
    if HPET_CLOCK.try_get().is_some() {
        panic!("HPET already initialized");
    }

    let clock = HPET_CLOCK.get_or_init(|| {
        // only executed once
        let hpet = Hpet::new(hpet_table);
        Arc::new(Mutex::new(hpet))
    });

    cpu::cpu().pop_cli();

    clock.clone()
}

#[repr(C, packed(8))]
struct HpetInterruptStatus {
    status: RW<u32>,
    reserved: u32,
}

impl HpetInterruptStatus {
    fn set_interrupts_iter(&self) -> impl Iterator<Item = u8> {
        let s = self.status.read();
        (0..32).filter(move |bit| s & (1 << bit) != 0)
    }

    fn ack(&mut self, bit: u8) {
        assert!(bit < 32);
        unsafe { self.status.write(1 << bit) }
    }
}

#[derive(Clone, Copy, Debug)]
struct InterruptRouteCapabilityBitmap {
    bitmap: u32,
}

impl InterruptRouteCapabilityBitmap {
    fn is_set(&self, bit: u8) -> bool {
        self.bitmap & (1 << bit) != 0
    }

    fn enabled_routes(&self) -> impl Iterator<Item = u8> {
        let s = *self;
        (0..32).filter(move |bit| s.is_set(*bit))
    }
}

struct HpetTimerConfig {
    is_interrupt_level_triggered: bool,
    interrupt_enabled: bool,
    is_periodic: bool,
    is_periodic_capable: bool,
    is_64bit_capable: bool,
    timer_set_value: bool,
    force_32bit_mode: bool,
    interrupt_route: u8,
    interrupt_via_fsb: bool,
    fsb_capable: bool,
    interrupt_route_capabilities: InterruptRouteCapabilityBitmap,
}

impl HpetTimerConfig {
    fn new(data: u64) -> Self {
        Self {
            is_interrupt_level_triggered: data & (1 << 1) != 0,
            interrupt_enabled: data & (1 << 2) != 0,
            is_periodic: data & (1 << 3) != 0,
            is_periodic_capable: data & (1 << 4) != 0,
            is_64bit_capable: data & (1 << 5) != 0,
            timer_set_value: data & (1 << 6) != 0,
            force_32bit_mode: data & (1 << 7) != 0,
            interrupt_route: ((data >> 9) & 0x1F) as u8,
            interrupt_via_fsb: data & (1 << 14) != 0,
            fsb_capable: data & (1 << 15) != 0,
            interrupt_route_capabilities: InterruptRouteCapabilityBitmap {
                bitmap: ((data >> 32) & 0xFFFFFFFF) as u32,
            },
        }
    }

    fn as_u64(&self) -> u64 {
        let mut data = 0;
        if self.is_interrupt_level_triggered {
            data |= 1 << 1;
        }
        if self.interrupt_enabled {
            data |= 1 << 2;
        }
        if self.is_periodic {
            data |= 1 << 3;
        }
        if self.is_periodic_capable {
            data |= 1 << 4;
        }
        if self.is_64bit_capable {
            data |= 1 << 5;
        }
        if self.timer_set_value {
            data |= 1 << 6;
        }
        if self.force_32bit_mode {
            data |= 1 << 7;
        }
        data |= (self.interrupt_route as u64) << 9;
        if self.interrupt_via_fsb {
            data |= 1 << 14;
        }
        if self.fsb_capable {
            data |= 1 << 15;
        }
        data |= (self.interrupt_route_capabilities.bitmap as u64) << 32;

        data
    }
}

#[repr(C, align(8))]
struct HpetTimerMmio {
    config_and_capabilities: RW<u64>,
    comparator_value: WO<u64>,
    fsb_interrupt_route: RO<u64>,
    reserved: u64,
}

impl HpetTimerMmio {
    fn config(&self) -> HpetTimerConfig {
        HpetTimerConfig::new(self.config_and_capabilities.read())
    }

    fn set_config(&mut self, config: HpetTimerConfig) {
        unsafe { self.config_and_capabilities.write(config.as_u64()) };
    }

    fn write_comparator_value(&mut self, value: u64) {
        unsafe { self.comparator_value.write(value) };
    }
}

#[repr(C, align(8))]
struct HpetMmio {
    general_capabilities_id: RO<u64>,
    reserved0: u64,
    general_configuration: RW<u64>,
    reserved1: u64,
    general_interrupt_status: HpetInterruptStatus,
    reserved2: [u64; 25],
    main_counter_value: RO<u64>,
    reserved3: u64,
    timers: [HpetTimerMmio; 3],
}

pub struct Hpet {
    mmio: VirtualSpace<HpetMmio>,
}

impl Hpet {
    fn new(hpet: &acpi::tables::Hpet) -> Self {
        pit::disable();
        assert_eq!(hpet.base_address.address_space_id, 0); // memory space
        let mmio = unsafe { VirtualSpace::new(hpet.base_address.address).unwrap() };

        // enable the timer
        let mut s = Self { mmio };
        let clock_period = s.counter_clock_period();

        // setup interrupts for the first timer only for now
        let timer = &mut s.mmio.timers[0];
        let mut config = timer.config();
        assert!(config.is_periodic_capable); // must be periodic capable
        assert!(config.is_64bit_capable); // must be 64-bit capable

        config.is_interrupt_level_triggered = false;
        config.interrupt_enabled = true;
        config.is_periodic = true; // periodic
        config.force_32bit_mode = false; // don't force 32-bit mode
        config.interrupt_via_fsb = false; // don't use FSB
        let available_routes = config.interrupt_route_capabilities.enabled_routes();

        let mut first_available_route = None;
        let mut above_15_route = None;
        // check if we have available routes that are higher than 15, which
        // is the range of legacy ISA interrupts.
        // if we have any above those, it's best to use them
        // otherwise, we will use the first available route
        for route in available_routes {
            if first_available_route.is_none() && !apic::is_irq_assigned(route) {
                // we can use this route
                first_available_route = Some(route);
            }
            if above_15_route.is_none() && route > 15 {
                above_15_route = Some(route);
            }
            if first_available_route.is_some() && above_15_route.is_some() {
                break;
            }
        }

        let chosen_route = above_15_route
            .or(first_available_route)
            .expect("No available HPET route");

        config.interrupt_route = chosen_route;
        config.timer_set_value = true; // write the timer value
        timer.set_config(config);
        timer.write_comparator_value(FEMTOS_PER_SEC / clock_period);
        timer.write_comparator_value(FEMTOS_PER_SEC / clock_period);

        // setup ioapic
        apic::assign_io_irq(
            timer0_handler as InterruptHandlerWithAllState,
            chosen_route,
            cpu::cpu(),
        );

        s.set_enabled(true);
        // use normal routing
        s.set_enable_legacy_replacement_route(false);

        s
    }

    fn read_general_configuration(&self) -> u64 {
        self.mmio.general_configuration.read()
    }

    fn write_general_configuration(&mut self, value: u64) {
        unsafe { self.mmio.general_configuration.write(value) };
    }

    pub fn set_enabled(&mut self, enabled: bool) {
        let mut config = self.read_general_configuration();
        if enabled {
            config |= 1;
        } else {
            config &= !1;
        }
        self.write_general_configuration(config);
    }

    pub fn set_enable_legacy_replacement_route(&mut self, enabled: bool) {
        let mut config = self.read_general_configuration();
        if enabled {
            config |= 1 << 1;
        } else {
            config &= !(1 << 1);
        }
        self.write_general_configuration(config);
    }

    /// Returns the number of femtoseconds per counter tick
    fn counter_clock_period(&self) -> u64 {
        (self.mmio.general_capabilities_id.read() >> 32) & 0xFFFFFFFF
    }

    fn current_counter(&self) -> u64 {
        // Safety: we know that the counter is 64-bit, aligned, valid pointer
        self.mmio.main_counter_value.read()
    }

    fn status_interrupts_iter(&self) -> impl Iterator<Item = u8> {
        self.mmio.general_interrupt_status.set_interrupts_iter()
    }

    fn ack_interrupt(&mut self, interrupt: u8) {
        self.mmio.general_interrupt_status.ack(interrupt);
    }
}

impl ClockDevice for Mutex<Hpet> {
    fn name(&self) -> &'static str {
        "HPET"
    }

    fn get_time(&self) -> ClockTime {
        let clock = self.lock();
        let counter = clock.current_counter();
        let femtos_per_tick = clock.counter_clock_period();
        let nanos_per_tick = femtos_per_tick / NANOS_PER_FEMTO;
        let seconds_divider = FEMTOS_PER_SEC / femtos_per_tick;
        let seconds = counter / seconds_divider;
        let nanoseconds = (counter % seconds_divider) * nanos_per_tick;

        ClockTime {
            seconds,
            nanoseconds,
        }
    }

    fn granularity(&self) -> u64 {
        let granularity = self.lock().counter_clock_period() / NANOS_PER_FEMTO;
        if granularity == 0 {
            1
        } else {
            granularity
        }
    }

    fn require_calibration(&self) -> bool {
        false
    }

    fn rating(&self) -> u64 {
        50
    }
}

extern "cdecl" fn timer0_handler(_all_state: &mut InterruptAllSavedState) {
    let mut clock = HPET_CLOCK.get().as_ref().lock();

    // if we are level triggered, we must clear the interrupt bit
    if clock.mmio.timers[0].config().is_interrupt_level_triggered {
        if let Some(interrupt) = clock.status_interrupts_iter().next() {
            // clear the interrupt (must for level triggered interrupts)
            clock.ack_interrupt(interrupt);
        } else {
            warn!("Looks like we are getting PIT interrupt instead of HPET");
        }
    }

    apic::return_from_interrupt();
}