1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
mod hardware_timer;
mod rtc;
mod tsc;

use core::fmt;

use alloc::{sync::Arc, vec::Vec};
use tracing::info;

use crate::{
    acpi::tables::{self, BiosTables, Facp},
    cpu,
    sync::{once::OnceLock, spin::rwlock::RwLock},
};

use self::rtc::Rtc;

pub const NANOS_PER_SEC: u64 = 1_000_000_000;
pub const FEMTOS_PER_SEC: u64 = 1_000_000_000_000_000;
pub const NANOS_PER_FEMTO: u64 = 1_000_000;

static CLOCKS: OnceLock<Clock> = OnceLock::new();

pub fn clocks() -> &'static Clock {
    CLOCKS.get()
}

#[derive(Debug, Default, Clone, Copy, PartialEq, Eq)]
pub struct ClockTime {
    /// nanoseconds added to `seconds`
    pub nanoseconds: u64,
    /// seconds passed since a fixed point in time
    pub seconds: u64,
}

#[allow(dead_code)]
impl ClockTime {
    pub fn as_nanos(&self) -> u64 {
        self.seconds * NANOS_PER_SEC + self.nanoseconds
    }
}

impl Ord for ClockTime {
    fn cmp(&self, other: &Self) -> core::cmp::Ordering {
        self.seconds
            .cmp(&other.seconds)
            .then(self.nanoseconds.cmp(&other.nanoseconds))
    }
}

impl PartialOrd for ClockTime {
    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl core::ops::Sub for ClockTime {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self::Output {
        let nanoseconds = if self.nanoseconds < rhs.nanoseconds {
            self.nanoseconds + 1_000_000_000 - rhs.nanoseconds
        } else {
            self.nanoseconds - rhs.nanoseconds
        };
        let seconds = self.seconds
            - rhs.seconds
            - if self.nanoseconds < rhs.nanoseconds {
                1
            } else {
                0
            };
        Self {
            nanoseconds,
            seconds,
        }
    }
}

impl core::ops::Add for ClockTime {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        let nanoseconds = self.nanoseconds + rhs.nanoseconds;
        let seconds = self.seconds + rhs.seconds + nanoseconds / 1_000_000_000;
        Self {
            nanoseconds: nanoseconds % 1_000_000_000,
            seconds,
        }
    }
}

impl core::ops::AddAssign for ClockTime {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

trait ClockDevice: Send + Sync {
    /// Returns the name of the device
    fn name(&self) -> &'static str;
    /// Returns the current time of the device with no relation to anything
    /// The system will use consecutive calls to determine the time
    fn get_time(&self) -> ClockTime;
    /// Returns the granularity of the device in nanoseconds, i.e. the smallest time unit it can measure
    /// Must be at least 1
    fn granularity(&self) -> u64;
    /// Returns true if the device needs to be calibration
    /// i.e. it doesn't count time correctly
    fn require_calibration(&self) -> bool;
    /// Returns the rating of the device, i.e. how good it is
    /// The higher the better
    fn rating(&self) -> u64 {
        // default rating is 1
        1
    }
}

/// Accurate always increasing time source
struct SystemTime {
    /// The time when the system was started
    start_unix: ClockTime,
    /// The last time we ticked the system time
    last_tick: ClockTime,
    /// The system time since the start
    startup_offset: ClockTime,
    /// device used to get the time
    device: Option<Arc<dyn ClockDevice>>,
}

impl SystemTime {
    fn new(rtc: &Rtc) -> Self {
        let time = rtc.get_time();
        // let device_time = device.get_time();

        let timestamp = time.seconds_since_unix_epoch().expect("Must be after 1970");
        info!("Time now: {time} - UTC");
        info!("System start timestamp: {}", timestamp);

        let start_unix = ClockTime {
            nanoseconds: 0,
            seconds: timestamp,
        };

        Self {
            start_unix,
            last_tick: ClockTime {
                nanoseconds: 0,
                seconds: 0,
            },
            startup_offset: ClockTime {
                nanoseconds: 0,
                seconds: 0,
            },
            device: None,
        }
    }

    fn tick(&mut self) {
        if let Some(device) = &self.device {
            let time = device.get_time();
            let diff = time - self.last_tick;
            self.startup_offset += diff;
            self.last_tick = time;
        }
    }

    /// Will update the device if this one is different
    fn update_device(&mut self, device: Arc<dyn ClockDevice>, rtc: &Rtc) {
        if let Some(current_device) = &self.device {
            if Arc::ptr_eq(&device, current_device) {
                return;
            }

            // switch the counters to use the new device
            let time = current_device.get_time();
            let new_time = device.get_time();
            let diff = time - self.last_tick;
            self.startup_offset += diff;

            self.device = Some(device);
            self.last_tick = new_time
        } else {
            // this is the first time, make sure we are aligned with rtc

            cpu::cpu().push_cli();

            let mut rtc_time = rtc.get_time();
            // wait for the next second to start
            loop {
                let new_rtc_time = rtc.get_time();
                if new_rtc_time.seconds != rtc_time.seconds {
                    rtc_time = new_rtc_time;
                    break;
                }
            }
            let device_time = device.get_time();

            let timestamp = rtc_time
                .seconds_since_unix_epoch()
                .expect("Must be after 1970");
            info!("Adjusted Time now: {rtc_time} - UTC");
            info!("Adjusted System start timestamp: {}", timestamp);

            self.last_tick = device_time;
            self.device = Some(device);
            self.startup_offset = ClockTime {
                nanoseconds: 0,
                seconds: 0,
            };
            self.start_unix = ClockTime {
                nanoseconds: 0,
                seconds: rtc_time
                    .seconds_since_unix_epoch()
                    .expect("Must be after 1970"),
            };

            cpu::cpu().pop_cli();
        }
    }

    fn time_since_startup(&self) -> ClockTime {
        self.startup_offset
    }

    fn time_since_unix_epoch(&self) -> ClockTime {
        self.start_unix + self.startup_offset
    }
}

#[allow(dead_code)]
pub struct Clock {
    /// devices sorted based on their rating
    devices: RwLock<Vec<Arc<dyn ClockDevice>>>,
    /// Used to determine the outside world time and use it as a base
    rtc: Rtc,
    /// System time
    system_time: RwLock<SystemTime>,
}

impl fmt::Debug for Clock {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Clock").finish()
    }
}

impl Clock {
    fn new(rtc: Rtc) -> Self {
        Self {
            devices: RwLock::new(Vec::new()),
            system_time: RwLock::new(SystemTime::new(&rtc)),
            rtc,
        }
    }

    fn add_device(&self, device: Arc<dyn ClockDevice>) {
        info!(
            "Adding clock device: {}, rating: {}",
            device.name(),
            device.rating()
        );
        let mut devs = self.devices.write();
        devs.push(device);
        devs.sort_unstable_by_key(|device| -(device.rating() as i64));
        self.system_time
            .write()
            .update_device(devs[0].clone(), &self.rtc);
    }

    #[allow(dead_code)]
    fn get_best_clock(&self) -> Option<Arc<dyn ClockDevice>> {
        self.devices.read().first().map(Arc::clone)
    }

    fn get_best_for_calibration(&self) -> Option<Arc<dyn ClockDevice>> {
        self.devices
            .read()
            .iter()
            .find(|device| !device.require_calibration())
            .map(Arc::clone)
    }

    #[allow(dead_code)]
    pub fn tick_system_time(&self) {
        self.system_time.write().tick();
    }

    #[allow(dead_code)]
    pub fn time_since_startup(&self) -> ClockTime {
        // TODO: find a better way to do this
        let mut time = self.system_time.write();
        time.tick();
        time.time_since_startup()
    }

    #[allow(dead_code)]
    pub fn time_since_unix_epoch(&self) -> ClockTime {
        // TODO: find a better way to do this
        let mut time = self.system_time.write();
        time.tick();
        time.time_since_unix_epoch()
    }
}

pub fn init(bios_tables: &BiosTables) {
    let facp = bios_tables.rsdt.get_table::<Facp>();
    let century_reg = facp.map(|facp| facp.century);

    // create the clock
    CLOCKS
        .set(Clock::new(Rtc::new(century_reg)))
        .expect("Clock is already initialized");

    // init HPET
    let hpet_table = bios_tables.rsdt.get_table::<tables::Hpet>();

    let hardware_timer = hardware_timer::HardwareTimer::init(hpet_table);
    clocks().add_device(hardware_timer);

    // init TSC
    if let Some(tsc) = tsc::Tsc::new(
        clocks()
            .get_best_for_calibration()
            .expect("Have a clock that can be used as a base for TSC calibration")
            .as_ref(),
    ) {
        clocks().add_device(Arc::new(tsc));
    }
}