1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use core::sync::atomic::{AtomicU64, Ordering};

use tracing::info;

use crate::{cpu, devices::clock::NANOS_PER_SEC};

use super::ClockDevice;

// The value used to scale the number of nanoseconds, to get more precision
// i.e. with value of `32`, the lowest `32` bits will act as the fractional part
// the rest will be the integer part
const NS_SCALE_SHIFT: u8 = 32;

const fn cycles_to_ns(cycles: u64, nanos_per_cycle_scaled: u64) -> u64 {
    (((cycles as u128) * (nanos_per_cycle_scaled as u128)) >> NS_SCALE_SHIFT) as u64
}

struct SyncPoint {
    nanos: u64,
    cycles: u64,
}

pub struct Tsc {
    /// Nanoseconds offset that we started counting from
    /// it may be negative, and thus we use `wrapping_add` and `wrapping_sub`
    start_time: AtomicU64,
    /// Frequency of the TSC, how many nano seconds per cycle
    /// scaled because
    nanos_per_cycle_scaled: AtomicU64,
    /// The latency of reading the TSC
    rd_tsc_call_latency: u64,
}

impl Tsc {
    pub fn new(base: &dyn ClockDevice) -> Option<Self> {
        if unsafe { cpu::cpuid::cpuid!(cpu::cpuid::FN_FEAT).edx } & cpu::cpuid::FEAT_EDX_TSC == 0 {
            return None;
        }
        let mut rd_tsc_call_latency = u64::MAX;
        for _ in 0..100 {
            let t1 = unsafe { cpu::read_tsc() };
            let t2 = unsafe { cpu::read_tsc() };
            rd_tsc_call_latency = rd_tsc_call_latency.min(t2 - t1);
        }

        let tsc = Tsc {
            start_time: AtomicU64::new(0),
            nanos_per_cycle_scaled: AtomicU64::new(0),
            rd_tsc_call_latency,
        };
        tsc.calibrate(base);
        Some(tsc)
    }

    fn get_device_delay(&self, base: &dyn ClockDevice) -> u64 {
        // measure clock latency
        let mut device_latency = u64::MAX;
        for _ in 0..100 {
            let t1 = unsafe { cpu::read_tsc() };
            let _ = base.get_time();
            let t2 = unsafe { cpu::read_tsc() };
            device_latency = device_latency.min(t2 - t1);
        }
        // subtract the latency from the TSC latency
        device_latency -= self.rd_tsc_call_latency;
        device_latency
    }

    fn get_sync_time_point(&self, base: &dyn ClockDevice, device_latency: u64) -> SyncPoint {
        let good_latency = device_latency + device_latency / 2;
        let mut min_cycles = u64::MAX;

        let mut ns = 0;
        let mut cycles = 0;

        for _ in 0..10 {
            let t1 = unsafe { cpu::read_tsc() };
            let device_time = base.get_time();
            let t2 = unsafe { cpu::read_tsc() };
            let diff_tsc = t2 - t1;
            if diff_tsc >= min_cycles {
                continue;
            }
            min_cycles = diff_tsc;

            ns = device_time.seconds * NANOS_PER_SEC + device_time.nanoseconds;
            cycles = t1 + self.rd_tsc_call_latency;

            if diff_tsc <= good_latency {
                break;
            }
        }

        SyncPoint { nanos: ns, cycles }
    }

    // part of the implementation is taken from `yb303/tsc_clock`
    //
    // MIT License
    //
    // Copyright (c) 2020 yb303
    //
    // Permission is hereby granted, free of charge, to any person obtaining a copy
    // of this software and associated documentation files (the "Software"), to deal
    // in the Software without restriction, including without limitation the rights
    // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    // copies of the Software, and to permit persons to whom the Software is
    // furnished to do so, subject to the following conditions:
    //
    // The above copyright notice and this permission notice shall be included in all
    // copies or substantial portions of the Software.
    //
    // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
    // SOFTWARE.
    pub fn calibrate(&self, base: &dyn ClockDevice) {
        let device_latency = self.get_device_delay(base);

        let granularity = base.granularity();
        assert!(granularity > 0);

        // at least 1ms (1000_000ns), and no more than 1s (1_000_000_000ns)
        let sleep_time = (granularity * 1000).max(1_000_000).min(NANOS_PER_SEC);
        info!("Calibrating TSC with sleep time: {}ns", sleep_time);

        let start_point = self.get_sync_time_point(base, device_latency);
        // sleep
        {
            let mut time = base.get_time();
            let start_ns = time.seconds * NANOS_PER_SEC + time.nanoseconds;
            while time.seconds * NANOS_PER_SEC + time.nanoseconds - start_ns < sleep_time {
                time = base.get_time();
            }
        }
        let end_point = self.get_sync_time_point(base, device_latency);

        let ns_diff = end_point.nanos - start_point.nanos;
        let cycles_diff = end_point.cycles - start_point.cycles;

        let scaled_ns_per_cycle = ((ns_diff as u128) << NS_SCALE_SHIFT) / cycles_diff as u128;
        assert!(scaled_ns_per_cycle.leading_zeros() >= 64,
            "scaled_ns_per_cycle: {scaled_ns_per_cycle:#X} is too large, i.e. `ns/cycles` is more than `{NS_SCALE_SHIFT}` bits");
        let scaled_ns_per_cycle = scaled_ns_per_cycle as u64;

        info!(
            "TSC calibrated, CPU running at {:.1}Hz",
            1_000_000_000.0 / (scaled_ns_per_cycle as f64 / ((1u128 << NS_SCALE_SHIFT) as f64))
        );

        let start_ns = start_point
            .nanos
            .wrapping_sub(cycles_to_ns(start_point.cycles, scaled_ns_per_cycle));
        self.start_time.store(start_ns, Ordering::Relaxed);
        self.nanos_per_cycle_scaled
            .store(scaled_ns_per_cycle, Ordering::Relaxed);
    }

    #[allow(dead_code)]
    fn recalibrate(&self, base: &dyn ClockDevice) {
        let device_latency = self.get_device_delay(base);

        let end_point = self.get_sync_time_point(base, device_latency);

        let expected_nanos = self.time_nanos_since_start(end_point.cycles);
        let diff = expected_nanos - end_point.nanos;

        // If the difference is more than 50ms, we need to recalibrate
        if diff > 50_000_000 {
            info!("TSC recalibration needed, diff: {}ns", diff);
            self.calibrate(base);
        }
        let start_ns = end_point
            .nanos
            .wrapping_sub(self.cycles_to_time_nanos(end_point.cycles));
        self.start_time.store(start_ns, Ordering::Relaxed);
    }

    fn time_nanos_since_start(&self, cycles: u64) -> u64 {
        self.start_time
            .load(Ordering::Relaxed)
            .wrapping_add(self.cycles_to_time_nanos(cycles))
    }

    fn cycles_to_time_nanos(&self, cycles: u64) -> u64 {
        cycles_to_ns(cycles, self.nanos_per_cycle_scaled.load(Ordering::Relaxed))
    }
}

impl ClockDevice for Tsc {
    fn name(&self) -> &'static str {
        "TSC"
    }

    fn get_time(&self) -> super::ClockTime {
        let tsc = unsafe { cpu::read_tsc() };

        let nanos = self.time_nanos_since_start(tsc);
        super::ClockTime {
            seconds: nanos / NANOS_PER_SEC,
            nanoseconds: nanos % NANOS_PER_SEC,
        }
    }

    fn granularity(&self) -> u64 {
        let n = self.cycles_to_time_nanos(1);
        if n > 0 {
            n
        } else {
            1
        }
    }

    fn require_calibration(&self) -> bool {
        true
    }

    fn rating(&self) -> u64 {
        100
    }
}