1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
mod desc;

use core::mem;

use alloc::{collections::vec_deque::VecDeque, sync::Arc, vec::Vec};
use desc::{Descriptor, DmaRing, ReceiveDescriptor, TransmitDescriptor};
use tracing::{info, trace, warn};

use crate::{
    cpu::{
        self,
        idt::{BasicInterruptHandler, InterruptStackFrame64},
        interrupts::apic,
    },
    devices::pci::PciDeviceConfig,
    memory_management::virtual_space::VirtualSpace,
    net::{NetworkError, NetworkPacket},
    sync::{once::OnceLock, spin::mutex::Mutex},
    utils::{
        vcell::{RO, RW, WO},
        Pad,
    },
};

use super::{MacAddress, NetworkDevice};

static E1000: OnceLock<Arc<Mutex<E1000>>> = OnceLock::new();

pub fn get_device() -> Option<&'static dyn NetworkDevice> {
    E1000.try_get().map(|e1000| e1000 as &dyn NetworkDevice)
}

#[allow(dead_code)]
#[allow(clippy::identity_op)]
#[allow(clippy::eq_op)]
pub mod flags {
    // EEPROM
    pub const EERD_ADDR_SHIFT: u32 = 8;
    pub const EERD_DATA_SHIFT: u32 = 16;
    pub const EERD_START: u32 = 1 << 0;
    pub const EERD_DONE: u32 = 1 << 4;
    pub const EE_SIZE: u32 = 1 << 9;

    // Control
    pub const CTRL_FD: u32 = 1 << 0;
    pub const CTRL_SPEED_10MB: u32 = 0 << 8;
    pub const CTRL_SPEED_100MB: u32 = 1 << 8;
    pub const CTRL_SPEED_1000MB: u32 = 2 << 8;
    pub const CRTL_FORCE_DPLX: u32 = 1 << 12;

    // Receive Control
    pub const RCTL_EN: u32 = 1 << 1;
    pub const RCTL_SBP: u32 = 1 << 2;
    pub const RCTL_UPE: u32 = 1 << 3;
    pub const RCTL_MPE: u32 = 1 << 4;
    pub const RCTL_LPE: u32 = 1 << 5;
    pub const RCTL_LBM_NO: u32 = 0 << 6;
    pub const RCTL_LBM_YES: u32 = 3 << 6;
    pub const RCTL_RDMTS_HALF: u32 = 0 << 8;
    pub const RCTL_RDMTS_QUARTER: u32 = 1 << 8;
    pub const RCTL_RDMTS_ONE_EIGHTH: u32 = 2 << 8;
    pub const RCTL_MO_36: u32 = 0 << 12;
    pub const RCTL_MO_35: u32 = 1 << 12;
    pub const RCTL_MO_34: u32 = 2 << 12;
    pub const RCTL_MO_33: u32 = 3 << 12;
    pub const RCTL_BAM: u32 = 1 << 15;
    pub const RCTL_BSIZE_256: u32 = 0 << 25 | 3 << 16;
    pub const RCTL_BSIZE_512: u32 = 0 << 25 | 2 << 16;
    pub const RCTL_BSIZE_1024: u32 = 0 << 25 | 1 << 16;
    pub const RCTL_BSIZE_2048: u32 = 0 << 25 | 0 << 16;
    pub const RCTL_BSIZE_4096: u32 = 1 << 25 | 3 << 16;
    pub const RCTL_BSIZE_8192: u32 = 1 << 25 | 2 << 16;
    pub const RCTL_BSIZE_16384: u32 = 1 << 25 | 1 << 16;
    pub const RCTL_VLAN_FILTER_EN: u32 = 1 << 18;
    pub const RCTL_CFI_EN: u32 = 1 << 19;
    pub const RCTL_CFI: u32 = 1 << 20;
    pub const RCTL_DPF: u32 = 1 << 22;
    pub const RCTL_PMCF: u32 = 1 << 23;
    pub const RCTL_STRIP_ETH_CRC: u32 = 1 << 26;

    // Transmit Control
    pub const TCTL_EN: u32 = 1 << 1;
    pub const TCTL_PSP: u32 = 1 << 3;
    // collision threshold
    pub const TCTL_CT_SHIFT: u32 = 4;
    pub const TCTL_CT_MASK: u32 = 0xF << TCTL_CT_SHIFT;
    // collision distance
    pub const TCTL_COLD_SHIFT: u32 = 12;
    pub const TCTL_COLD_MASK: u32 = 0x3F << TCTL_COLD_SHIFT;

    // Interrupts
    pub const I_TXDW: u32 = 1 << 0;
    pub const I_TXQE: u32 = 1 << 1;
    pub const I_LSC: u32 = 1 << 2;
    pub const I_RXSEQ: u32 = 1 << 3;
    pub const I_RXDMT0: u32 = 1 << 4;
    pub const I_RXO: u32 = 1 << 6;
    pub const I_RXT0: u32 = 1 << 7;
    pub const I_TXD_LOW: u32 = 1 << 15;
}

#[allow(dead_code)]
mod pci_cfg {
    // PCI Command
    pub const CMD_IO_SPACE: u16 = 1 << 0;
    pub const CMD_MEM_SPACE: u16 = 1 << 1;
    pub const CMD_BUS_MASTER: u16 = 1 << 2;
}

#[repr(C, align(8))]
struct E1000Mmio {
    control: RW<u32>,
    _pad0: Pad<4>,
    status: RO<u32>,
    _pad1: Pad<4>,
    eecd: RW<u32>,
    eerd: RW<u32>,
    ctrl_ext: RW<u32>,
    flash: RW<u32>,
    mdi_control: RW<u32>,
    _pad2: Pad<4>,
    flow_control_addr_low: RW<u32>,
    flow_control_addr_high: RW<u32>,
    flow_control_type: RW<u32>,
    _pad3: Pad<4>,
    vlan_ethertype: RW<u32>,
    _pad4: Pad<0x82>,
    interrupt_cause_read: RW<u32>,
    interrupt_throttling: RW<u32>,
    interrupt_cause_set: RW<u32>,
    _pad5: Pad<4>,
    interrupt_mask_set: RW<u32>,
    _pad6: Pad<4>,
    interrupt_mask_clear: WO<u32>,
    _pad7: Pad<0x24>,
    receive_control: RW<u32>,
    _pad8: Pad<0x6C>,
    flow_control_transmit_timer: RW<u32>,
    _pad9: Pad<4>,
    transmit_config_word: RW<u32>,
    _pad10: Pad<4>,
    receive_config_word: RO<u32>,
    _pad11: Pad<0x27C>,
    transmit_control: RW<u32>,
    _pad12: Pad<0x9FC>,
    led_control: RW<u32>,
    _pad13: Pad<0x160C>,
    receive_data_fifo_head: RW<u32>,
    _pad14: Pad<0x4>,
    receive_data_fifo_tail: RW<u32>,
    _pad15: Pad<0x4>,
    receive_data_fifo_head_saved: RW<u32>,
    _pad16: Pad<0x4>,
    receive_data_fifo_tail_saved: RW<u32>,
    _pad17: Pad<0x4>,
    receive_data_fifo_packet_count: RW<u32>,
    _pad18: Pad<0x3CC>,
    receive_descriptor_base_low: RW<u32>,
    receive_descriptor_base_high: RW<u32>,
    receive_descriptor_length: RW<u32>,
    _pad19: Pad<0x4>,
    receive_descriptor_head: RW<u32>,
    _pad20: Pad<0x4>,
    receive_descriptor_tail: RW<u32>,
    _pad21: Pad<0x4>,
    receive_delay_timer: RW<u32>,
    _pad22: Pad<0x8>,
    receive_interrupt_abs_delay_timer: RW<u32>,
    _pad23: Pad<0xFD0>,
    transmit_descriptor_base_low: RW<u32>,
    transmit_descriptor_base_high: RW<u32>,
    transmit_descriptor_length: RW<u32>,
    _pad24: Pad<0x4>,
    transmit_descriptor_head: RW<u32>,
    _pad25: Pad<0x4>,
    transmit_descriptor_tail: RW<u32>,
    _pad26: Pad<0x4>,
    transmit_descriptor_interrupt_delay: RW<u32>,
    _pad27: Pad<0x19DC>,
    multicast_table_array: [RW<u32>; 128],
    receive_addresses: [(RW<u32>, RW<u32>); 16],
}

struct E1000 {
    mmio: VirtualSpace<E1000Mmio>,
    eeprom_size: u16,

    recv_ring: DmaRing<ReceiveDescriptor, 128>,
    transmit_ring: DmaRing<TransmitDescriptor, 128>,

    received_queue: VecDeque<Vec<u8>>,
    in_middle_of_packet: bool,
}

#[allow(dead_code)]
impl E1000 {
    fn new(mmio: VirtualSpace<E1000Mmio>) -> Self {
        let eecd = mmio.eecd.read();
        let eeprom_size = if eecd & flags::EE_SIZE != 0 { 256 } else { 64 };

        let mut recv_ring = DmaRing::new();
        recv_ring.allocate_all_for_hw();

        Self {
            mmio,
            eeprom_size,
            recv_ring,
            transmit_ring: DmaRing::new(),
            received_queue: VecDeque::new(),
            in_middle_of_packet: false,
        }
    }

    pub fn read_eeprom(&self, offset: u16) -> u16 {
        assert!(offset < self.eeprom_size);
        assert!(offset <= 0xFF);

        let data = (offset as u32) << flags::EERD_ADDR_SHIFT | flags::EERD_START;
        unsafe { self.mmio.eerd.write(data) };

        while self.mmio.eerd.read() & flags::EERD_DONE == 0 {
            core::hint::spin_loop();
        }

        (self.mmio.eerd.read() >> flags::EERD_DATA_SHIFT) as u16
    }

    pub fn read_mac_address(&self) -> MacAddress {
        let low = self.read_eeprom(0);
        let mid = self.read_eeprom(1);
        let high = self.read_eeprom(2);

        MacAddress([
            (low & 0xFF) as u8,
            (low >> 8) as u8,
            (mid & 0xFF) as u8,
            (mid >> 8) as u8,
            (high & 0xFF) as u8,
            (high >> 8) as u8,
        ])
    }

    pub fn init_recv(&self) {
        // 14.4 Receive Initialization
        unsafe {
            assert_eq!(self.recv_ring.physical_ptr() & 0xF, 0);
            self.mmio
                .receive_descriptor_base_low
                .write(self.recv_ring.physical_ptr() as u32);
            self.mmio
                .receive_descriptor_base_high
                .write((self.recv_ring.physical_ptr() >> 32) as u32);
            self.mmio
                .receive_descriptor_length
                .write(self.recv_ring.bytes_len() as u32);
            self.mmio
                .receive_descriptor_head
                .write(self.recv_ring.head() as u32);
            self.mmio
                .receive_descriptor_tail
                .write(self.recv_ring.tail() as u32);

            self.mmio.receive_delay_timer.write(0);
            self.mmio.receive_interrupt_abs_delay_timer.write(0);

            for i in 0..128 {
                self.mmio.multicast_table_array[i].write(0);
            }

            // Enable
            self.mmio.receive_control.write(
                flags::RCTL_EN
                    | flags::RCTL_LPE
                    | flags::RCTL_BAM
                    | flags::RCTL_BSIZE_4096
                    | flags::RCTL_STRIP_ETH_CRC,
            )
        };
    }

    pub fn init_transmit(&self) {
        // 14.5 Transmit Initialization
        unsafe {
            assert_eq!(self.recv_ring.physical_ptr() & 0xF, 0);
            self.mmio
                .transmit_descriptor_base_low
                .write(self.transmit_ring.physical_ptr() as u32);
            self.mmio
                .transmit_descriptor_base_high
                .write((self.transmit_ring.physical_ptr() >> 32) as u32);
            self.mmio
                .transmit_descriptor_length
                .write(self.transmit_ring.bytes_len() as u32);
            self.mmio
                .transmit_descriptor_head
                .write(self.transmit_ring.head() as u32);
            self.mmio
                .transmit_descriptor_tail
                .write(self.transmit_ring.tail() as u32);

            self.mmio.transmit_descriptor_interrupt_delay.write(0);

            self.mmio.transmit_control.write(
                flags::TCTL_EN
                    | flags::TCTL_PSP
                    | (0xF << flags::TCTL_CT_SHIFT)
                    | (0x40 << flags::TCTL_COLD_SHIFT),
            );
        }
    }

    pub fn enable_interrupts(&self) {
        unsafe {
            self.mmio.interrupt_mask_set.write(
                flags::I_LSC
                    | flags::I_RXSEQ
                    | flags::I_RXDMT0
                    | flags::I_RXO
                    | flags::I_RXT0
                    | flags::I_TXDW
                    | flags::I_TXD_LOW,
            );
            // clear any pending interrupts
            self.mmio.interrupt_cause_read.read();
            self.flush_writes();
        }
    }

    pub fn flush_writes(&self) {
        self.mmio.status.read();
    }

    pub fn handle_recv(&mut self) {
        let head = self.mmio.receive_descriptor_head.read() as u16;

        let mut count = 0;
        while let Some(desc) = self.recv_ring.pop_next(head) {
            count += 1;

            if self.in_middle_of_packet {
                self.received_queue
                    .back_mut()
                    .expect("No packet in queue")
                    .extend_from_slice(desc.data());
            } else {
                self.received_queue.push_back(desc.data().to_vec());
            }
            self.in_middle_of_packet = !desc.is_end_of_packet();

            self.recv_ring.allocate_next_for_hw();
        }

        let new_tail = self.recv_ring.tail();
        trace!("Processed {count} descriptors, new tail: {new_tail:x}");
        unsafe { self.mmio.receive_descriptor_tail.write(new_tail as u32) };
    }

    pub fn handle_transmit_interrupt(&mut self) {
        let head = self.mmio.transmit_descriptor_head.read() as u16;
        // just pop all those that are done, so we can allocate them
        // later, no need to do any processing here
        while self.transmit_ring.pop_next(head).is_some() {}
    }

    pub fn transmit_raw(&mut self, data: &[u8]) {
        assert!(data.len() < 4096);

        let Some(desc) = self.transmit_ring.allocate_next_for_hw() else {
            todo!("Transmit queue is full, implement dynamic driver queueing");
        };

        desc.data_mut(data.len()).copy_from_slice(data);
        desc.prepare_for_transmit();

        unsafe {
            self.mmio
                .transmit_descriptor_tail
                .write(self.transmit_ring.tail() as u32)
        };

        self.flush_writes();
    }

    pub fn transmit_packet(&mut self, packet: &NetworkPacket) -> Result<(), NetworkError> {
        if packet.size() > 4096 {
            return Err(NetworkError::PacketTooLarge(packet.size()));
        }

        let Some(desc) = self.transmit_ring.allocate_next_for_hw() else {
            todo!("Transmit queue is full, implement dynamic driver queueing");
        };

        let data = desc.data_mut(packet.size());
        packet.write_into_buffer(data)?;

        desc.prepare_for_transmit();

        unsafe {
            self.mmio
                .transmit_descriptor_tail
                .write(self.transmit_ring.tail() as u32)
        };

        self.flush_writes();

        Ok(())
    }

    pub fn receive_packet(&mut self) -> Option<Vec<u8>> {
        self.received_queue.pop_front()
    }

    // might not work depending on the network card
    pub fn enable_loopback(&self) {
        unsafe {
            self.mmio
                .receive_control
                .write(self.mmio.receive_control.read() | flags::RCTL_LBM_YES);
        }
    }

    pub fn enable_full_duplex(&self) {
        unsafe {
            self.mmio
                .control
                .write(self.mmio.control.read() | flags::CTRL_FD | flags::CRTL_FORCE_DPLX);
        }
    }
}

impl NetworkDevice for Arc<Mutex<E1000>> {
    fn mac_address(&self) -> MacAddress {
        self.lock().read_mac_address()
    }

    fn send(&self, data: &NetworkPacket) -> Result<(), NetworkError> {
        self.lock().transmit_packet(data)
    }

    fn receive_into(&self, packet: &mut NetworkPacket) -> Result<bool, NetworkError> {
        if let Some(data) = self.lock().receive_packet() {
            packet.read_from_buffer(&data)?;
            Ok(true)
        } else {
            Ok(false)
        }
    }
}

pub fn try_register(pci_device: &PciDeviceConfig) -> bool {
    match (pci_device.vendor_id, pci_device.device_id) {
        // TODO: this excludes (82541xx and 82547GI/EI)
        //       they have a lot of special differences from the rest
        (
            0x8086,
            0x100E..=0x1012
            | 0x1015..=0x1017
            | 0x101D
            | 0x1026..=0x1028
            | 0x1079..=0x107B
            | 0x1107
            | 0x1112,
        ) => {} // allow
        _ => return false,
    }

    let Some((mem_base, mem_size, _)) = pci_device.base_address[0].get_memory() else {
        warn!("No valid memory base address");
        return false;
    };

    let mut command = pci_device.read_command();
    if command & pci_cfg::CMD_BUS_MASTER == 0 {
        // enable bus master
        command |= pci_cfg::CMD_BUS_MASTER;
        pci_device.write_command(command);
    }

    assert!(mem_size >= mem::size_of::<E1000Mmio>());
    assert_ne!(mem_base, 0);
    assert_eq!(mem_base % 8, 0);

    let mmio =
        unsafe { VirtualSpace::<E1000Mmio>::new(mem_base as u64) }.expect("Failed to map MMIO");
    // set mmio first
    E1000
        .set(Arc::new(Mutex::new(E1000::new(mmio))))
        .ok()
        .expect("Should only be called once");

    // TODO: handle overlapping interrupts correctly
    apic::assign_io_irq(
        interrupt as BasicInterruptHandler,
        pci_device.interrupt_line,
        cpu::cpu(),
    );

    let e1000 = E1000.get().lock();

    info!("MAC address: {:?}", e1000.read_mac_address());

    e1000.enable_interrupts();
    e1000.init_recv();
    e1000.init_transmit();
    e1000.flush_writes();

    true
}

extern "x86-interrupt" fn interrupt(_stack_frame: InterruptStackFrame64) {
    let mut e1000 = E1000.get().lock();
    unsafe { e1000.mmio.interrupt_mask_set.write(0x1) };
    let cause = e1000.mmio.interrupt_cause_read.read();

    if cause & flags::I_RXO != 0 {
        // Receiver FIFO overrun
        warn!("Receiver FIFO overrun");
    }
    if cause & flags::I_LSC != 0 {
        // Link Status Change
        warn!("Link Status Change");
    }
    if cause & flags::I_RXSEQ != 0 {
        // Receiver Sequence Error
        warn!("Receiver Sequence Error");
    }
    if cause & flags::I_TXD_LOW != 0 {
        // Transmit Descriptor Low Ring
        warn!("Transmit Descriptor Low Ring");
    }

    e1000.handle_recv();
    e1000.handle_transmit_interrupt();

    apic::return_from_interrupt();
}