1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
//! This very specific to 64-bit x86 architecture, if this is to be ported to other architectures
//! this will need to be changed

use core::{ops::RangeBounds, slice::IterMut};

use tracing::trace;

use crate::{
    cpu,
    memory_management::{
        memory_layout::{
            align_range, align_up, is_aligned, kernel_elf_rodata_end, physical2virtual,
            virtual2physical, MemSize, EXTENDED_OFFSET, KERNEL_BASE, KERNEL_END, KERNEL_LINK,
            KERNEL_MAPPED_SIZE, PAGE_2M, PAGE_4K,
        },
        physical_page_allocator,
    },
    sync::{once::OnceLock, spin::mutex::Mutex},
};

use super::memory_layout::{
    stack_guard_page_ptr, PROCESS_KERNEL_STACK_BASE, PROCESS_KERNEL_STACK_SIZE,
};

// TODO: replace by some sort of bitfield
#[allow(dead_code)]
pub mod flags {
    pub(super) const PTE_PRESENT: u64 = 1 << 0;
    pub const PTE_WRITABLE: u64 = 1 << 1;
    pub const PTE_USER: u64 = 1 << 2;
    pub const PTE_WRITETHROUGH: u64 = 1 << 3;
    pub const PTE_NOT_CACHEABLE: u64 = 1 << 4;
    pub(super) const PTE_ACCESSED: u64 = 1 << 5;
    pub(super) const PTE_DIRTY: u64 = 1 << 6;
    pub(super) const PTE_HUGE_PAGE: u64 = 1 << 7;
    pub(super) const PTE_GLOBAL: u64 = 1 << 8;
    pub(super) const PTE_NO_EXECUTE: u64 = 1 << 63;
}

const ADDR_MASK: u64 = 0x0000_0000_FFFF_F000;

// only use the last index for the kernel
// all the other indexes are free to use by the user
const KERNEL_L4_INDEX: usize = 0x1FF;

// The L3 positions are used for the non-moving kernel code/data
const KERNEL_L3_INDEX_START: usize = 0x1FE;
#[allow(dead_code)]
const KERNEL_L3_INDEX_END: usize = 0x1FF;

const KERNEL_L3_PROCESS_INDEX_START: usize = 0;
const KERNEL_L3_PROCESS_INDEX_END: usize = KERNEL_L3_INDEX_START - 1;

pub const KERNEL_PROCESS_VIRTUAL_ADDRESS_START: usize =
    // sign extension
    0xFFFF_0000_0000_0000 | KERNEL_L4_INDEX << 39 | KERNEL_L3_PROCESS_INDEX_START << 30;

// the user can use all the indexes except the last one
const NUM_USER_L4_INDEXES: usize = KERNEL_L4_INDEX;

pub const MAX_USER_VIRTUAL_ADDRESS: usize =
    // sign extension
    0xFFFF_0000_0000_0000
        | (KERNEL_L4_INDEX - 1) << 39
        | (0x1FF << 30)
        | (0x1FF << 21)
        | (0x1FF << 12);

#[inline(always)]
const fn get_l4(addr: usize) -> usize {
    (addr >> 39) & 0x1FF
}

#[inline(always)]
const fn get_l3(addr: usize) -> usize {
    (addr >> 30) & 0x1FF
}

#[inline(always)]
const fn get_l2(addr: usize) -> usize {
    (addr >> 21) & 0x1FF
}

#[inline(always)]
const fn get_l1(addr: usize) -> usize {
    (addr >> 12) & 0x1FF
}

// have a specific alignment so we can fit them in a page
#[repr(C, align(32))]
#[derive(Debug, Copy, Clone)]
pub struct VirtualMemoryMapEntry {
    /// The virtual address to map, this is constrained by the memory model, and thus `usize`
    pub virtual_address: usize,
    /// The physical address to map, if `None` then it will be allocated
    /// This can be above `usize` in `32-bit`, as it support (in intel) up to `40-bit` physical address
    /// for 32-bit paging
    pub physical_address: Option<u64>,
    /// The size of the mapping, this is constrained by the memory model, and thus `usize`
    pub size: usize,
    /// The flags to use for the mapping, look at [flags] for more information
    pub flags: u64,
}

// This is a general structure for all levels
#[repr(C, align(4096))]
struct PageDirectoryTable {
    entries: [u64; 512],
}

#[repr(transparent)]
struct PageDirectoryTablePtr {
    physical_addr: u64,
}

impl PageDirectoryTablePtr {
    const fn from_entry(entry: u64) -> Self {
        Self {
            physical_addr: entry & ADDR_MASK,
        }
    }

    /// An ugly hack used in `do_for_every_user_entry` to get a mutable reference to the page directory table
    fn entries_from_mut_entry(entry: &mut u64) -> &mut PageDirectoryTable {
        let table = physical2virtual(*entry & ADDR_MASK) as *mut PageDirectoryTable;
        unsafe { &mut *table }
    }

    fn as_physical(&self) -> u64 {
        self.physical_addr
    }

    fn as_virtual(&self) -> usize {
        // for now, it must be within the lower kernel memory, easier to support
        assert!(self.physical_addr < KERNEL_END as u64);
        physical2virtual(self.physical_addr)
    }

    fn alloc_new() -> Self {
        // SAFETY: it will panic if it couldn't allocate, so if it returns, it is safe
        Self {
            physical_addr: unsafe {
                virtual2physical(physical_page_allocator::alloc_zeroed() as _)
            },
        }
    }

    fn as_ptr(&self) -> *mut PageDirectoryTable {
        self.as_virtual() as *mut PageDirectoryTable
    }

    fn as_mut(&mut self) -> &mut PageDirectoryTable {
        unsafe { &mut *self.as_ptr() }
    }

    fn as_ref(&self) -> &PageDirectoryTable {
        unsafe { &*self.as_ptr() }
    }

    unsafe fn free(self) {
        unsafe { physical_page_allocator::free(self.as_virtual() as _) };
    }
}

static KERNEL_VIRTUAL_MEMORY_MANAGER: OnceLock<Mutex<VirtualMemoryMapper>> = OnceLock::new();

pub fn init_kernel_vm() {
    if KERNEL_VIRTUAL_MEMORY_MANAGER.try_get().is_some() {
        panic!("Kernel VM already initialized");
    }

    let manager = KERNEL_VIRTUAL_MEMORY_MANAGER
        .get_or_init(|| Mutex::new(VirtualMemoryMapper::new_kernel_vm()))
        .lock();

    // // SAFETY: this is the start VM, so we are sure that we are not inside a process, so its safe to switch
    unsafe { manager.switch_to_this() };
}
/// # Safety
/// This must never be called while we are in a process context
/// and using any process specific memory regions
pub unsafe fn switch_to_kernel() {
    KERNEL_VIRTUAL_MEMORY_MANAGER.get().lock().switch_to_this();
}

pub fn map_kernel(entry: &VirtualMemoryMapEntry) {
    // make sure we are only mapping to kernel memory
    assert!(entry.virtual_address >= KERNEL_BASE);
    KERNEL_VIRTUAL_MEMORY_MANAGER.get().lock().map(entry);
}

/// `is_allocated` is used to indicate if the physical pages were allocated by the caller
/// i.e. when we called `map_kernel`, the `physical_address` is `None` and we will allocate the pages, and thus
/// when calling this function, you should pass `is_allocated = true`
// TODO: maybe its better to keep track of this information somewhere in the mapper here
pub fn unmap_kernel(entry: &VirtualMemoryMapEntry, is_allocated: bool) {
    // make sure we are only mapping to kernel memory
    assert!(entry.virtual_address >= KERNEL_BASE);
    KERNEL_VIRTUAL_MEMORY_MANAGER
        .get()
        .lock()
        .unmap(entry, is_allocated);
}

#[allow(dead_code)]
pub fn is_address_mapped_in_kernel(addr: usize) -> bool {
    KERNEL_VIRTUAL_MEMORY_MANAGER
        .get()
        .lock()
        .is_address_mapped(addr)
}

pub fn clone_current_vm_as_user() -> VirtualMemoryMapper {
    // precaution, a sort of manual lock
    cpu::cpu().push_cli();
    let manager = get_current_vm();
    let mut new_vm = manager.clone_kernel_mem();
    cpu::cpu().pop_cli();
    new_vm.is_user = true;
    new_vm
}

pub fn get_current_vm() -> VirtualMemoryMapper {
    VirtualMemoryMapper::get_current_vm()
}

pub struct VirtualMemoryMapper {
    page_map_l4: PageDirectoryTablePtr,
    is_user: bool,
}

impl VirtualMemoryMapper {
    fn new() -> Self {
        Self {
            page_map_l4: PageDirectoryTablePtr::alloc_new(),
            is_user: false,
        }
    }

    // create a new virtual memory that maps the kernel only
    pub fn clone_kernel_mem(&self) -> Self {
        let this_kernel_l4 =
            PageDirectoryTablePtr::from_entry(self.page_map_l4.as_ref().entries[KERNEL_L4_INDEX]);

        let mut new_vm = Self::new();

        let mut new_kernel_l4 = PageDirectoryTablePtr::alloc_new();

        // copy the whole kernel mapping (process specific will be replaced later)
        for i in 0..=0x1FF {
            new_kernel_l4.as_mut().entries[i] = this_kernel_l4.as_ref().entries[i];
        }

        new_vm.page_map_l4.as_mut().entries[KERNEL_L4_INDEX] =
            new_kernel_l4.as_physical() | flags::PTE_PRESENT | flags::PTE_WRITABLE;

        new_vm
    }

    /// # Safety
    ///
    /// After this call, the VM must never be switched to unless
    /// its from the scheduler or we are sure that the previous kernel regions are not used
    pub unsafe fn add_process_specific_mappings(&mut self) {
        let mut this_kernel_l4 =
            PageDirectoryTablePtr::from_entry(self.page_map_l4.as_ref().entries[KERNEL_L4_INDEX]);

        // clear out the process specific mappings if we have cloned another process
        // but of course don't deallocate, just remove the mappings
        for i in KERNEL_L3_PROCESS_INDEX_START..=KERNEL_L3_PROCESS_INDEX_END {
            this_kernel_l4.as_mut().entries[i] = 0;
        }
        // set it temporarily so we can map kernel range
        // TODO: fix this hack
        self.is_user = false;
        // load new kernel stack for this process
        self.map(&VirtualMemoryMapEntry {
            virtual_address: PROCESS_KERNEL_STACK_BASE,
            physical_address: None, // allocate
            size: PROCESS_KERNEL_STACK_SIZE,
            flags: flags::PTE_WRITABLE,
        });
        self.is_user = true;
    }

    fn load_vm(base: &PageDirectoryTablePtr) {
        trace!(
            "Switching to new page map: {:p}",
            base.as_physical() as *const u8
        );
        unsafe { cpu::set_cr3(base.as_physical()) }
    }

    fn get_current_vm() -> Self {
        let kernel_vm_addr = KERNEL_VIRTUAL_MEMORY_MANAGER
            .get()
            .lock()
            .page_map_l4
            .as_physical();
        let cr3 = unsafe { cpu::get_cr3() }; // cr3 is physical address
        let is_user = cr3 != kernel_vm_addr;
        Self {
            page_map_l4: PageDirectoryTablePtr::from_entry(cr3),
            is_user,
        }
    }

    /// Return `true` if the current VM is used by the current cpu
    pub fn is_used_by_me(&self) -> bool {
        let cr3 = unsafe { cpu::get_cr3() };
        cr3 == self.page_map_l4.as_physical()
    }

    /// # Safety
    /// This must be used with caution, it must never be switched while we are using
    /// memory from the same regions, i.e. kernel stack while we are in an interrupt
    pub unsafe fn switch_to_this(&self) {
        Self::load_vm(&self.page_map_l4);
    }

    // This replicate what is done in the assembly code
    // but it will be stored
    fn new_kernel_vm() -> Self {
        let data_start = align_up(kernel_elf_rodata_end(), PAGE_4K);
        let kernel_vm = [
            // Low memory (has some BIOS stuff): mapped to kernel space
            VirtualMemoryMapEntry {
                virtual_address: KERNEL_BASE,
                physical_address: Some(0),
                size: EXTENDED_OFFSET,
                flags: flags::PTE_WRITABLE,
            },
            // Extended memory: kernel .text and .rodata sections
            VirtualMemoryMapEntry {
                virtual_address: KERNEL_LINK,
                physical_address: Some(virtual2physical(KERNEL_LINK)),
                size: (virtual2physical(data_start) - virtual2physical(KERNEL_LINK)) as usize,
                flags: 0, // read-only
            },
            // Extended memory: kernel .data and .bss sections and the rest of the data for the `whole` memory
            // we decided to use in the kernel
            VirtualMemoryMapEntry {
                virtual_address: data_start,
                physical_address: Some(virtual2physical(data_start)),
                size: KERNEL_MAPPED_SIZE - virtual2physical(data_start) as usize,
                flags: flags::PTE_WRITABLE,
            },
        ];

        // create a new fresh page map
        // SAFETY: we are calling the virtual memory manager after initializing the physical page allocator
        let mut s = Self::new();

        for entry in kernel_vm.iter() {
            s.map(entry);
        }

        // unmap stack guard
        s.unmap(
            &VirtualMemoryMapEntry {
                virtual_address: stack_guard_page_ptr(),
                physical_address: None,
                size: PAGE_4K,
                flags: 0,
            },
            false,
        );

        s
    }

    pub fn map(&mut self, entry: &VirtualMemoryMapEntry) {
        let VirtualMemoryMapEntry {
            mut virtual_address,
            physical_address: mut start_physical_address,
            size: requested_size,
            flags,
        } = entry;

        assert!(!self.page_map_l4.as_ptr().is_null());
        assert!(is_aligned(self.page_map_l4.as_virtual(), PAGE_4K));

        let (aligned_start, mut size, _) = align_range(virtual_address, *requested_size, PAGE_4K);
        virtual_address = aligned_start;

        if self.is_user {
            assert_ne!(*flags & flags::PTE_USER, 0);
            assert_ne!(get_l4(virtual_address), KERNEL_L4_INDEX);
            let end = virtual_address + size;
            assert!(end <= MAX_USER_VIRTUAL_ADDRESS);
        }

        if let Some(start_physical_address) = start_physical_address.as_mut() {
            let (aligned_start, physical_size, _) =
                align_range(*start_physical_address, *requested_size, PAGE_4K);
            assert_eq!(physical_size, size);
            *start_physical_address = aligned_start;
        }

        // keep track of current address and size
        let mut physical_address = start_physical_address;

        assert!(size > 0);

        trace!(
            "{} {:08X?}",
            MemSize(size),
            VirtualMemoryMapEntry {
                virtual_address,
                physical_address,
                size,
                flags: *flags,
            }
        );

        while size > 0 {
            let current_physical_address = physical_address.unwrap_or_else(|| {
                virtual2physical(unsafe { physical_page_allocator::alloc_zeroed() as _ })
            });
            trace!(
                "[!] Mapping {:p} to {:p}",
                virtual_address as *const u8,
                current_physical_address as *const u8
            );
            let page_map_l4_index = get_l4(virtual_address);
            let page_directory_pointer_index = get_l3(virtual_address);
            let page_directory_index = get_l2(virtual_address);
            let page_table_index = get_l1(virtual_address);

            // Level 4
            let page_map_l4_entry = &mut self.page_map_l4.as_mut().entries[page_map_l4_index];

            if *page_map_l4_entry & flags::PTE_PRESENT == 0 {
                let page_directory_pointer_table = PageDirectoryTablePtr::alloc_new();
                *page_map_l4_entry =
                    (page_directory_pointer_table.as_physical() & ADDR_MASK) | flags::PTE_PRESENT;
            }
            // add new flags if any
            *page_map_l4_entry |= flags;
            trace!(
                "L4[{}]: {:p} = {:x}",
                page_map_l4_index,
                page_map_l4_entry,
                *page_map_l4_entry
            );

            // Level 3
            let mut page_directory_pointer_table =
                PageDirectoryTablePtr::from_entry(*page_map_l4_entry);

            let page_directory_pointer_entry =
                &mut page_directory_pointer_table.as_mut().entries[page_directory_pointer_index];

            if *page_directory_pointer_entry & flags::PTE_PRESENT == 0 {
                let page_directory_table = PageDirectoryTablePtr::alloc_new();
                *page_directory_pointer_entry =
                    (page_directory_table.as_physical() & ADDR_MASK) | flags::PTE_PRESENT;
            }

            // add new flags
            *page_directory_pointer_entry |= flags;
            trace!(
                "L3[{}]: {:p} = {:x}",
                page_directory_pointer_index,
                page_directory_pointer_entry,
                *page_directory_pointer_entry
            );

            // Level 2
            let mut page_directory_table =
                PageDirectoryTablePtr::from_entry(*page_directory_pointer_entry);
            let page_directory_entry =
                &mut page_directory_table.as_mut().entries[page_directory_index];

            // here we have an intersection, if we can map a 2MB page, we will, otherwise we will map a 4K page
            // if we are providing the pages (the user didn't provide), then we can't use 2MB pages
            // let can_map_2mb_page = physical_address
            //     .map(|phy_addr| {
            //         is_aligned(phy_addr as _, PAGE_2M)
            //             && is_aligned(virtual_address as _, PAGE_2M)
            //             && size >= PAGE_2M as u64
            //     })
            //     .unwrap_or(false);
            // TODO: we have disabled 2MB as its not easy to unmap in the middle, all pages must be the sames

            let can_map_2mb_page = false;
            if can_map_2mb_page {
                // we already have an entry here
                if *page_directory_entry & flags::PTE_PRESENT != 0 {
                    // did we have a mapping here that lead to 4k pages?
                    // if so, we should free the physical page allocation for them
                    if *page_directory_entry & flags::PTE_HUGE_PAGE == 0 {
                        let page_table_ptr =
                            PageDirectoryTablePtr::from_entry(*page_directory_entry);

                        unsafe { page_table_ptr.free() };
                    }
                }

                // Level 1
                *page_directory_entry = (current_physical_address & ADDR_MASK)
                    | flags
                    | flags::PTE_PRESENT
                    | flags::PTE_HUGE_PAGE;

                trace!(
                    "L2[{}] huge: {:p} = {:x}",
                    page_directory_index,
                    page_directory_entry,
                    *page_directory_entry
                );

                size -= PAGE_2M;
                // do not overflow the address
                if size == 0 {
                    break;
                }
                virtual_address += PAGE_2M;
                if let Some(physical_address) = physical_address.as_mut() {
                    *physical_address += PAGE_2M as u64;
                }
            } else {
                // continue mapping 4K pages
                if *page_directory_entry & flags::PTE_PRESENT == 0 {
                    let page_table = PageDirectoryTablePtr::alloc_new();
                    *page_directory_entry =
                        (page_table.as_physical() & ADDR_MASK) | flags::PTE_PRESENT;
                }
                // add new flags
                *page_directory_entry |= flags;
                trace!(
                    "L2[{}]: {:p} = {:x}",
                    page_directory_index,
                    page_directory_entry,
                    *page_directory_entry
                );

                // Level 1
                let mut page_table = PageDirectoryTablePtr::from_entry(*page_directory_entry);
                let page_table_entry = &mut page_table.as_mut().entries[page_table_index];
                *page_table_entry =
                    (current_physical_address & ADDR_MASK) | flags | flags::PTE_PRESENT;
                trace!(
                    "L1[{}]: {:p} = {:x}",
                    page_table_index,
                    page_table_entry,
                    *page_table_entry
                );

                size -= PAGE_4K;
                // do not overflow the address
                if size == 0 {
                    break;
                }
                virtual_address += PAGE_4K;
                if let Some(physical_address) = physical_address.as_mut() {
                    *physical_address += PAGE_4K as u64;
                }
            }

            trace!("");
        }
    }

    /// Removes mapping of a virtual entry, it will free it from physical memory if it was allocated
    pub fn unmap(&mut self, entry: &VirtualMemoryMapEntry, is_allocated: bool) {
        let VirtualMemoryMapEntry {
            mut virtual_address,
            physical_address,
            size,
            flags,
        } = entry;

        assert!(physical_address.is_none());

        // get the end before alignment
        let (aligned_start, mut size, _) = align_range(virtual_address, *size, PAGE_4K);
        virtual_address = aligned_start;

        assert!(size > 0);

        trace!(
            "{} {:08X?}",
            MemSize(size),
            VirtualMemoryMapEntry {
                virtual_address,
                physical_address: *physical_address,
                size,
                flags: *flags,
            }
        );

        while size > 0 {
            unsafe {
                cpu::invalidate_tlp(virtual_address as _);
            }

            let page_map_l4_index = get_l4(virtual_address);
            let page_directory_pointer_index = get_l3(virtual_address);
            let page_directory_index = get_l2(virtual_address);
            let page_table_index = get_l1(virtual_address);

            // Level 4
            let page_map_l4_entry = &mut self.page_map_l4.as_mut().entries[page_map_l4_index];

            if *page_map_l4_entry & flags::PTE_PRESENT == 0 {
                panic!("Trying to unmap a non-mapped address");
            }
            // remove flags
            *page_map_l4_entry &= !flags;
            trace!(
                "L4[{}]: {:p} = {:x}",
                page_map_l4_index,
                page_map_l4_entry,
                *page_map_l4_entry
            );

            // Level 3
            let mut page_directory_pointer_table =
                PageDirectoryTablePtr::from_entry(*page_map_l4_entry);

            let page_directory_pointer_entry =
                &mut page_directory_pointer_table.as_mut().entries[page_directory_pointer_index];

            if *page_directory_pointer_entry & flags::PTE_PRESENT == 0 {
                panic!("Trying to unmap a non-mapped address");
            }
            // remove flags
            *page_directory_pointer_entry &= !flags;
            trace!(
                "L3[{}]: {:p} = {:x}",
                page_directory_pointer_index,
                page_directory_pointer_entry,
                *page_directory_pointer_entry
            );

            // Level 2
            let mut page_directory_table =
                PageDirectoryTablePtr::from_entry(*page_directory_pointer_entry);
            let page_directory_entry =
                &mut page_directory_table.as_mut().entries[page_directory_index];

            if *page_directory_entry & flags::PTE_PRESENT == 0 {
                panic!("Trying to unmap a non-mapped address");
            }
            // remove flags
            *page_directory_entry &= !flags;

            // Level 1
            let mut page_table = PageDirectoryTablePtr::from_entry(*page_directory_entry);
            let page_table_entry = &mut page_table.as_mut().entries[page_table_index];
            if *page_table_entry & flags::PTE_PRESENT == 0 {
                panic!("Trying to unmap a non-mapped address");
            }
            let physical_entry = PageDirectoryTablePtr::from_entry(*page_table_entry);
            if is_allocated {
                unsafe { physical_entry.free() };
            }
            // remove whole entry
            *page_table_entry = 0;
            trace!(
                "L1[{}]: {:p} = {:x}",
                page_table_index,
                page_table_entry,
                *page_table_entry
            );

            size -= PAGE_4K;
            // do not overflow the address
            if size == 0 {
                break;
            }
            virtual_address += PAGE_4K;
        }
    }

    pub fn is_address_mapped(&self, addr: usize) -> bool {
        let page_map_l4_index = get_l4(addr);
        let page_directory_pointer_index = get_l3(addr);
        let page_directory_index = get_l2(addr);
        let page_table_index = get_l1(addr);

        // Level 4
        let page_map_l4 = self.page_map_l4.as_ref();
        let page_map_l4_entry = &page_map_l4.entries[page_map_l4_index];

        if *page_map_l4_entry & flags::PTE_PRESENT == 0 {
            return false;
        }
        trace!(
            "L4[{}]: {:p} = {:x}",
            page_map_l4_index,
            page_map_l4_entry,
            *page_map_l4_entry
        );

        // Level 3
        let page_directory_pointer_table = PageDirectoryTablePtr::from_entry(*page_map_l4_entry);
        let page_directory_pointer_entry =
            &page_directory_pointer_table.as_ref().entries[page_directory_pointer_index];
        if *page_directory_pointer_entry & flags::PTE_PRESENT == 0 {
            return false;
        }
        trace!(
            "L3[{}]: {:p} = {:x}",
            page_directory_pointer_index,
            page_directory_pointer_entry,
            *page_directory_pointer_entry
        );

        // Level 2
        let page_directory_table = PageDirectoryTablePtr::from_entry(*page_directory_pointer_entry);
        let page_directory_entry = &page_directory_table.as_ref().entries[page_directory_index];
        if *page_directory_entry & flags::PTE_PRESENT == 0 {
            return false;
        }
        if *page_directory_entry & flags::PTE_HUGE_PAGE != 0 {
            return true;
        }
        trace!(
            "L2[{}]: {:p} = {:x}",
            page_directory_index,
            page_directory_entry,
            *page_directory_entry
        );

        // Level 1
        let page_table = PageDirectoryTablePtr::from_entry(*page_directory_entry);
        let page_table_entry = &page_table.as_ref().entries[page_table_index];
        if *page_table_entry & flags::PTE_PRESENT == 0 {
            return false;
        }
        trace!(
            "L1[{}]: {:p} = {:x}",
            page_table_index,
            page_table_entry,
            *page_table_entry
        );

        true
    }

    // TODO: add tests for this
    fn do_for_ranges_entries<R1, R2, F>(&mut self, l4_ranges: R1, l3_ranges: R2, mut f: F)
    where
        R1: RangeBounds<usize>,
        R2: RangeBounds<usize>,
        F: FnMut(&mut u64),
    {
        let page_map_l4 = self.page_map_l4.as_mut();

        let present = |entry: &&mut u64| **entry & flags::PTE_PRESENT != 0;

        fn as_page_directory_table_flat(entry: &mut u64) -> IterMut<u64> {
            let page_directory_table = PageDirectoryTablePtr::entries_from_mut_entry(entry);
            page_directory_table.entries.iter_mut()
        }

        // handle 2MB pages and below
        let handle_2mb_pages = |page_directory_entry: &mut u64| {
            // handle 2MB pages
            if *page_directory_entry & flags::PTE_HUGE_PAGE != 0 {
                f(page_directory_entry);
            } else {
                as_page_directory_table_flat(page_directory_entry)
                    .filter(present)
                    .for_each(&mut f);
            }
        };

        let l4_start = match l4_ranges.start_bound() {
            core::ops::Bound::Included(&start) => start,
            core::ops::Bound::Unbounded => 0,
            core::ops::Bound::Excluded(_) => unreachable!("Excluded start bound"),
        };
        let l4_end = match l4_ranges.end_bound() {
            core::ops::Bound::Included(&end) => end,
            core::ops::Bound::Excluded(&end) => end - 1,
            core::ops::Bound::Unbounded => 0x1FF, // max entries
        };
        let l3_start = match l3_ranges.start_bound() {
            core::ops::Bound::Included(&start) => start,
            core::ops::Bound::Unbounded => 0,
            core::ops::Bound::Excluded(_) => unreachable!("Excluded start bound"),
        };
        let l3_end = match l3_ranges.end_bound() {
            core::ops::Bound::Included(&end) => end,
            core::ops::Bound::Excluded(&end) => end - 1,
            core::ops::Bound::Unbounded => 0x1FF, // max entries
        };

        let l4_skip = l4_start;
        let l4_take = l4_end - l4_skip + 1;
        let l3_skip = l3_start;
        let l3_take = l3_end - l3_skip + 1;

        page_map_l4
            .entries
            .iter_mut()
            .skip(l4_skip)
            .take(l4_take) //skip the kernel (the last one)
            .flat_map(as_page_directory_table_flat)
            .skip(l3_skip)
            .take(l3_take)
            .filter(present)
            .flat_map(as_page_directory_table_flat)
            .filter(present)
            .for_each(handle_2mb_pages);
    }

    // the handler function definition is `fn(page_entry: &mut u64)`
    fn do_for_every_user_entry(&mut self, f: impl FnMut(&mut u64)) {
        self.do_for_ranges_entries(0..NUM_USER_L4_INDEXES, 0..=0x1FF, f)
    }

    // the handler function definition is `fn(page_entry: &mut u64)`
    fn do_for_kernel_process_entry(&mut self, f: impl FnMut(&mut u64)) {
        self.do_for_ranges_entries(
            KERNEL_L4_INDEX..=KERNEL_L4_INDEX,
            KERNEL_L3_PROCESS_INDEX_START..=KERNEL_L3_PROCESS_INDEX_END,
            f,
        );
    }

    // search for all the pages that are mapped to the user ranges and unmap them and free their memory
    // also unmap any process specific kernel memory
    pub fn unmap_process_memory(&mut self) {
        let free_page = |entry: &mut u64| {
            assert_eq!(
                *entry & flags::PTE_HUGE_PAGE,
                0,
                "We haven't implemented 2MB physical pages for user allocation"
            );
            let page_table_ptr = PageDirectoryTablePtr::from_entry(*entry);
            unsafe { page_table_ptr.free() };
            *entry = 0;
        };

        self.do_for_every_user_entry(free_page);
        self.do_for_kernel_process_entry(free_page);
    }
}