1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
use core::{ffi, fmt, mem};

use crate::{
    acpi::tables::{Rsdp, RsdpV1, RsdpV2},
    io::NoDebug,
    memory_management::memory_layout::{align_up, MemSize, PAGE_4K},
};

#[repr(u32)]
#[derive(Debug, PartialEq, Eq)]
pub enum MemoryMapType {
    Available = 1,
    Reserved = 2,
    ACPIReclaimable = 3,
    ACPINonVolatile = 4,
    BadMemory = 5,
    Undefined(u32),
}

#[derive(Debug)]
pub struct MemoryMap {
    pub base_addr: u64,
    pub length: u64,
    pub mem_type: MemoryMapType,
}

impl fmt::Display for MemoryMap {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "range={:016X}..{:016X}, len={:4}, ty={:?}",
            self.base_addr,
            self.base_addr + self.length,
            MemSize(self.length),
            self.mem_type
        )
    }
}

struct MemoryMapTagRaw {
    entry_size: u32,
    _entry_version: u32,
}

#[derive(Clone, Debug)]
pub struct MemoryMapIter {
    remaining: usize,
    entry_size: u32,
    memory_map_raw: *const MemoryMapsRaw,
}

impl Iterator for MemoryMapIter {
    type Item = MemoryMap;

    fn next(&mut self) -> Option<Self::Item> {
        if self.remaining == 0 {
            return None;
        }
        let ptr = self.memory_map_raw;
        let mmap = unsafe { &*ptr };
        let memory_map = MemoryMap {
            base_addr: mmap.base_addr,
            length: mmap.length,
            mem_type: match mmap.mem_type {
                1 => MemoryMapType::Available,
                2 => MemoryMapType::Reserved,
                3 => MemoryMapType::ACPIReclaimable,
                4 => MemoryMapType::ACPINonVolatile,
                5 => MemoryMapType::BadMemory,
                n => MemoryMapType::Undefined(n),
            },
        };
        self.memory_map_raw =
            (self.memory_map_raw as u64).wrapping_add(self.entry_size as _) as *const MemoryMapsRaw;
        self.remaining = self.remaining.saturating_sub(self.entry_size as _);
        Some(memory_map)
    }
}

#[repr(u32)]
#[derive(Debug, PartialEq, Eq)]
pub enum EfiMemoryMapType {
    Reserved = 0,
    LoaderCode = 1,
    LoaderData = 2,
    BootServicesCode = 3,
    BootServicesData = 4,
    RuntimeServicesCode = 5,
    RuntimeServicesData = 6,
    Conventional = 7,
    Unusable = 8,
    ACPIReclaimable = 9,
    ACPINonVolatile = 10,
    MemoryMappedIO = 11,
    MemoryMappedIOPortSpace = 12,
    PalCode = 13,
    PersistentMemory = 14,
    Undefined(u32),
}

#[derive(Debug)]
pub struct EfiMemoryMap {
    pub mem_type: EfiMemoryMapType,
    pub physical_start: u64,
    pub virtual_start: u64,
    pub number_of_pages: u64,
    pub attributes: u64,
}

impl fmt::Display for EfiMemoryMap {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "range={:016X}..{:016X}, (virt_start={:016X}), len={:4}, ty={:?}, attributes={:X}",
            self.physical_start,
            self.physical_start + self.number_of_pages * PAGE_4K as u64,
            self.virtual_start,
            MemSize(self.number_of_pages * PAGE_4K as u64),
            self.mem_type,
            self.attributes
        )
    }
}

#[repr(C, packed(4))]
struct EfiMemoryMapsRaw {
    pub mem_type: u64,
    pub physical_start: u64,
    pub virtual_start: u64,
    pub number_of_pages: u64,
    pub attributes: u64,
}

#[derive(Clone, Debug)]
pub struct EfiMemoryMapIter {
    remaining: usize,
    entry_size: u32,
    memory_map_raw: *const EfiMemoryMapsRaw,
}

impl Iterator for EfiMemoryMapIter {
    type Item = EfiMemoryMap;

    fn next(&mut self) -> Option<Self::Item> {
        if self.remaining == 0 {
            return None;
        }
        let ptr = self.memory_map_raw;
        let mmap = unsafe { &*ptr };
        let memory_map = EfiMemoryMap {
            physical_start: mmap.physical_start,
            virtual_start: mmap.virtual_start,
            number_of_pages: mmap.number_of_pages,
            attributes: mmap.attributes,
            mem_type: match mmap.mem_type {
                0 => EfiMemoryMapType::Reserved,
                1 => EfiMemoryMapType::LoaderCode,
                2 => EfiMemoryMapType::LoaderData,
                3 => EfiMemoryMapType::BootServicesCode,
                4 => EfiMemoryMapType::BootServicesData,
                5 => EfiMemoryMapType::RuntimeServicesCode,
                6 => EfiMemoryMapType::RuntimeServicesData,
                7 => EfiMemoryMapType::Conventional,
                8 => EfiMemoryMapType::Unusable,
                9 => EfiMemoryMapType::ACPIReclaimable,
                10 => EfiMemoryMapType::ACPINonVolatile,
                11 => EfiMemoryMapType::MemoryMappedIO,
                12 => EfiMemoryMapType::MemoryMappedIOPortSpace,
                13 => EfiMemoryMapType::PalCode,
                14 => EfiMemoryMapType::PersistentMemory,
                n => EfiMemoryMapType::Undefined(n as _),
            },
        };
        self.memory_map_raw = (self.memory_map_raw as u64).wrapping_add(self.entry_size as _)
            as *const EfiMemoryMapsRaw;
        self.remaining = self.remaining.saturating_sub(self.entry_size as _);
        Some(memory_map)
    }
}

#[repr(C, packed(4))]
struct MemoryMapsRaw {
    base_addr: u64,
    length: u64,
    mem_type: u32,
    reserved: u32,
}

#[derive(Debug, Clone)]
pub enum FramebufferColorInfo {
    Indexed {
        num_colors: u32,
        // TODO: add colors iter
    },
    Rgb {
        red_field_position: u8,
        red_mask_size: u8,
        green_field_position: u8,
        green_mask_size: u8,
        blue_field_position: u8,
        blue_mask_size: u8,
    },
    EgaText,
}

impl FramebufferColorInfo {
    fn from_color_info(ty: u8, color_info: &[u8]) -> Self {
        match ty {
            0 => {
                let num_colors = u32::from_le_bytes([
                    color_info[0],
                    color_info[1],
                    color_info[2],
                    color_info[3],
                ]);
                Self::Indexed { num_colors }
            }
            1 => Self::Rgb {
                red_field_position: color_info[0],
                red_mask_size: color_info[1],
                green_field_position: color_info[2],
                green_mask_size: color_info[3],
                blue_field_position: color_info[4],
                blue_mask_size: color_info[5],
            },
            2 => Self::EgaText,
            _ => panic!("unknown framebuffer color info type"),
        }
    }

    pub fn is_rgb(&self) -> bool {
        matches!(self, Self::Rgb { .. })
    }
}

#[repr(C)]
struct FramebufferRaw {
    addr: u64,
    pitch: u32,
    width: u32,
    height: u32,
    bpp: u8,
    framebuffer_type: u8,
    reserved: u16,
}

#[derive(Debug, Clone)]
pub struct Framebuffer {
    pub addr: u64,
    pub pitch: u32,
    pub width: u32,
    pub height: u32,
    pub bpp: u8,
    pub color_info: FramebufferColorInfo,
}

#[derive(Debug, Clone)]
#[repr(C, packed)]
pub struct VbeControlInfo {
    pub signature: [u8; 4],
    pub version: u16,
    pub oem_str_ptr: u32,
    pub capabilities: u32,
    pub video_modes_ptr: u32,
    pub video_memory_size_blocks: u16,
    pub software_rev: u16,
    pub vendor: u32,
    pub product_name: u32,
    pub product_rev: u32,
    pub reserved: NoDebug<[u8; 222]>,
    pub oem_data: NoDebug<[u8; 256]>,
}

#[derive(Debug, Clone)]
#[repr(C, packed)]
pub struct VbeModeInfo {
    pub attributes: u16,
    pub window_a_attributes: u8,
    pub window_b_attributes: u8,
    pub window_granularity: u16,
    pub window_size: u16,
    pub window_a_segment: u16,
    pub window_b_segment: u16,
    pub window_func_ptr: u32,
    pub bytes_per_scanline: u16,
    pub width: u16,
    pub height: u16,
    pub w_char: u8,
    pub y_char: u8,
    pub planes: u8,
    pub bpp: u8,
    pub banks: u8,
    pub memory_model: u8,
    pub bank_size: u8,
    pub image_pages: u8,
    pub reserved0: u8,
    pub red_mask_size: u8,
    pub red_field_position: u8,
    pub green_mask_size: u8,
    pub green_field_position: u8,
    pub blue_mask_size: u8,
    pub blue_field_position: u8,
    pub rsvd_mask_size: u8,
    pub rsvd_field_position: u8,
    pub direct_color_mode_attributes: u8,
    pub framebuffer_addr: u32,
    pub reserved1: NoDebug<[u8; 212]>,
}

#[derive(Debug, Clone)]
#[repr(C)]
pub struct VbeInfo {
    pub mode: u16,
    pub interface_seg: u16,
    pub interface_off: u16,
    pub interface_len: u16,
    pub control_info: VbeControlInfo,
    pub mode_info: VbeModeInfo,
}

struct MultiBootTagRaw {
    ty: u32,
    size: u32,
}

#[derive(Debug, Clone)]
#[repr(C, packed)]
pub struct BasicMemoryInfo {
    mem_lower: u32,
    mem_upper: u32,
}

#[derive(Debug, Clone)]
#[repr(C, packed)]
pub struct AdvancedPowerManagementTable {
    version: u16,
    cseg: u16,
    offset: u32,
    cseg_16: u16,
    dseg: u16,
    flags: u16,
    cseg_len: u16,
    cseg_16_len: u16,
    dseg_len: u16,
}

#[derive(Debug, Clone)]
pub enum MultiBootTag<'a> {
    BootCommandLine {
        cmdline: &'a str,
    },
    BootLoaderName {
        name: &'a str,
    },
    BasicMemoryInfo(&'a BasicMemoryInfo),
    AdvancedPowerManagementTable(&'a AdvancedPowerManagementTable),
    ImageLoadBasePhysical {
        base_addr: u32,
    },
    MemoryMap(MemoryMapIter),
    EfiMemoryMap(EfiMemoryMapIter),
    ElfSymbols,
    BiosBootDevice {
        biosdev: u32,
        partition: u32,
        sub_partition: u32,
    },
    FrameBufferInfo(Framebuffer),
    OldRsdp(Rsdp),
    NewRsdp(Rsdp),
    Efi64SystemTablePtr {
        ptr: u64,
    },
    EfiBootServicesNotTerminated,
    Efi64ImageHandle {
        ptr: u64,
    },
    VbeInfo(&'a VbeInfo),
}

pub struct MultiBootTagIter<'a> {
    current: *const MultiBootTagRaw,
    remaining: usize,
    phantom: core::marker::PhantomData<&'a ()>,
}

impl<'a> Iterator for MultiBootTagIter<'a> {
    type Item = MultiBootTag<'a>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.remaining == 0 {
            return None;
        }
        let ptr = self.current;
        let tag = unsafe { &*ptr };
        let tag_size = align_up(tag.size as _, 8);
        let next = unsafe { (ptr as *const u8).add(tag_size) as *const MultiBootTagRaw };
        self.remaining -= tag_size;
        self.current = next;
        let tag = match tag.ty {
            0 => {
                // end
                assert_eq!(tag.size as usize, mem::size_of::<MultiBootTagRaw>());
                assert_eq!(self.remaining, 0);
                return None;
            }
            1 => {
                let str_ptr = unsafe { ptr.add(1) as *const i8 };
                let cmdline =
                    unsafe { ffi::CStr::from_ptr(str_ptr).to_str().expect("invalid utf8") };
                MultiBootTag::BootCommandLine { cmdline }
            }
            2 => {
                let str_ptr = unsafe { ptr.add(1) as *const i8 };
                let name = unsafe { ffi::CStr::from_ptr(str_ptr).to_str().expect("invalid utf8") };
                MultiBootTag::BootLoaderName { name }
            }
            4 => {
                let tag = unsafe { &*(ptr.add(1) as *const BasicMemoryInfo) };
                MultiBootTag::BasicMemoryInfo(tag)
            }
            5 => {
                let tag = unsafe { ptr.add(1) as *const u32 };
                let data_slice = unsafe { core::slice::from_raw_parts(tag, 3) };
                MultiBootTag::BiosBootDevice {
                    biosdev: data_slice[0],
                    partition: data_slice[1],
                    sub_partition: data_slice[2],
                }
            }
            6 => {
                let mmap_tag = unsafe { &*(ptr.add(1) as *const MemoryMapTagRaw) };
                MultiBootTag::MemoryMap(MemoryMapIter {
                    remaining: tag.size as usize
                        - mem::size_of::<MultiBootTagRaw>()
                        - mem::size_of::<MemoryMapTagRaw>(),
                    entry_size: mmap_tag.entry_size,
                    memory_map_raw: unsafe { (mmap_tag as *const MemoryMapTagRaw).add(1) as _ },
                })
            }
            7 => {
                let vbe_tag = unsafe { &*(ptr.add(1) as *const VbeInfo) };
                MultiBootTag::VbeInfo(vbe_tag)
            }
            8 => {
                let frame_tag = unsafe { &*(ptr.add(1) as *const FramebufferRaw) };
                let color_info_start =
                    unsafe { (frame_tag as *const FramebufferRaw).add(1) as *const u8 };
                let remaining_size = tag.size as usize
                    - mem::size_of::<MultiBootTagRaw>()
                    - mem::size_of::<FramebufferRaw>();
                let color_info =
                    unsafe { core::slice::from_raw_parts(color_info_start, remaining_size) };
                MultiBootTag::FrameBufferInfo(Framebuffer {
                    addr: frame_tag.addr,
                    pitch: frame_tag.pitch,
                    width: frame_tag.width,
                    height: frame_tag.height,
                    bpp: frame_tag.bpp,
                    color_info: FramebufferColorInfo::from_color_info(
                        frame_tag.framebuffer_type,
                        color_info,
                    ),
                })
            }
            9 => {
                let _tag = unsafe { &*(ptr.add(1) as *const u32) };
                MultiBootTag::ElfSymbols
            }
            10 => {
                let tag = unsafe { &*(ptr.add(1) as *const AdvancedPowerManagementTable) };
                MultiBootTag::AdvancedPowerManagementTable(tag)
            }
            12 => {
                let efi64_ptr = unsafe { &*(ptr.add(1) as *const u64) };
                MultiBootTag::Efi64SystemTablePtr { ptr: *efi64_ptr }
            }
            14 => {
                let old_rsdp = unsafe { &*(ptr.add(1) as *const RsdpV1) };
                assert!(
                    tag.size as usize - mem::size_of::<MemoryMapTagRaw>()
                        == mem::size_of::<RsdpV1>(),
                );

                MultiBootTag::OldRsdp(Rsdp::from_v1(old_rsdp))
            }
            15 => {
                let new_rsdp = unsafe { &*(ptr.add(1) as *const RsdpV2) };
                assert!(
                    tag.size as usize - mem::size_of::<MemoryMapTagRaw>()
                        == mem::size_of::<RsdpV2>(),
                );

                MultiBootTag::NewRsdp(Rsdp::from_v2(new_rsdp))
            }
            17 => {
                let efi_mmap = unsafe { &*(ptr.add(1) as *const MemoryMapTagRaw) };

                MultiBootTag::EfiMemoryMap(EfiMemoryMapIter {
                    remaining: tag.size as usize
                        - mem::size_of::<MultiBootTagRaw>()
                        - mem::size_of::<MemoryMapTagRaw>(),
                    entry_size: efi_mmap.entry_size,
                    memory_map_raw: unsafe { (efi_mmap as *const MemoryMapTagRaw).add(1) as _ },
                })
            }
            18 => MultiBootTag::EfiBootServicesNotTerminated,
            20 => {
                let efi64_image_handle = unsafe { &*(ptr.add(1) as *const u64) };
                MultiBootTag::Efi64ImageHandle {
                    ptr: *efi64_image_handle,
                }
            }
            21 => {
                let tag = unsafe { &*(ptr.add(1) as *const u32) };
                MultiBootTag::ImageLoadBasePhysical { base_addr: *tag }
            }
            t => unimplemented!("tag {t}"),
        };
        Some(tag)
    }
}

#[repr(C, packed(4))]
pub struct MultiBoot2Info {
    total_size: u32,
    reserved: u32,
}

impl MultiBoot2Info {
    fn data_ptr(&self) -> *const u8 {
        unsafe { (self as *const Self as *const u8).add(8) }
    }

    #[allow(dead_code)]
    fn data_slice(&self) -> &[u8] {
        unsafe {
            core::slice::from_raw_parts(
                self.data_ptr(),
                self.total_size as usize - mem::size_of::<MultiBoot2Info>(),
            )
        }
    }

    pub fn end_address(&self) -> u64 {
        unsafe { (self as *const Self as *const u8).add(self.total_size as _) as _ }
    }

    pub fn tags(&self) -> MultiBootTagIter<'_> {
        MultiBootTagIter {
            current: unsafe { (self as *const Self as *const u8).add(8) as _ },
            remaining: self.total_size as usize - mem::size_of::<MultiBoot2Info>(),
            phantom: core::marker::PhantomData,
        }
    }

    pub fn cmdline(&self) -> Option<&str> {
        self.tags().find_map(|tag| match tag {
            MultiBootTag::BootCommandLine { cmdline } => Some(cmdline),
            _ => None,
        })
    }

    pub fn memory_maps(&self) -> Option<impl Iterator<Item = MemoryMap> + '_> {
        self.tags().find_map(|tag| match tag {
            MultiBootTag::MemoryMap(mmap) => Some(mmap),
            _ => None,
        })
    }

    pub fn framebuffer(&self) -> Option<Framebuffer> {
        self.tags().find_map(|tag| match tag {
            MultiBootTag::FrameBufferInfo(fb) => Some(fb),
            _ => None,
        })
    }

    pub fn vbe_info(&self) -> Option<&VbeInfo> {
        self.tags().find_map(|tag| match tag {
            MultiBootTag::VbeInfo(vbe) => Some(vbe),
            _ => None,
        })
    }

    pub fn get_most_recent_rsdp(&self) -> Option<Rsdp> {
        let mut ret_rdsp: Option<Rsdp> = None;
        for tag in self.tags() {
            match tag {
                MultiBootTag::OldRsdp(rsdp) | MultiBootTag::NewRsdp(rsdp) => {
                    // only override if new is higher version
                    if ret_rdsp.is_none() || ret_rdsp.as_ref().unwrap().revision < rsdp.revision {
                        ret_rdsp = Some(rsdp);
                    }
                }
                _ => {}
            }
        }
        ret_rdsp
    }
}

impl fmt::Display for MultiBoot2Info {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "Multiboot2:")?;
        for tag in self.tags() {
            match tag {
                MultiBootTag::MemoryMap(mmap) => {
                    writeln!(f, "  MemoryMap:")?;
                    for memory in mmap {
                        writeln!(f, "    {}", memory)?;
                    }
                }
                MultiBootTag::EfiMemoryMap(mmap) => {
                    writeln!(f, "  EfiMemoryMap:")?;
                    for memory in mmap {
                        writeln!(f, "    {}", memory)?;
                    }
                }
                t => writeln!(f, "  {:X?}", t)?,
            }
        }
        Ok(())
    }
}