1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
use core::{
    cell::RefCell,
    mem,
    sync::atomic::{AtomicBool, Ordering},
};

use alloc::{
    boxed::Box,
    collections::{BTreeMap, BinaryHeap},
    vec::Vec,
};
use tracing::{info, trace};

use crate::{
    cpu::{self, idt::InterruptAllSavedState, interrupts},
    devices::clock::{self, ClockTime},
    memory_management::virtual_memory_mapper,
    process::{syscalls, FxSave},
    sync::spin::mutex::Mutex,
};

use super::{Process, ProcessContext};

static SCHEDULER: Mutex<Scheduler> = Mutex::new(Scheduler::new());
static SHUTDOWN: AtomicBool = AtomicBool::new(false);

// an arbitrary value to reset the priority counters
// we don't want to get to 0, as it will result in underflow on subtract
const MIN_PRIORITY_VALUE: u64 = 100;

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum ProcessState {
    Running,
    Scheduled,
    WaitingForPid(u64),
    WaitingForTime(ClockTime),
}

/// A wrapper around [`Process`] that has extra details the scheduler cares about
struct SchedulerProcess {
    // using box here so that moving this around won't be as expensive
    process: RefCell<Box<Process>>,
    state: ProcessState,
    priority_counter: u64,
}

impl PartialEq for SchedulerProcess {
    fn eq(&self, other: &Self) -> bool {
        self.priority_counter == other.priority_counter
    }
}

impl PartialOrd for SchedulerProcess {
    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl Eq for SchedulerProcess {}
impl Ord for SchedulerProcess {
    fn cmp(&self, other: &Self) -> core::cmp::Ordering {
        self.priority_counter.cmp(&other.priority_counter)
    }
}

struct Scheduler {
    interrupt_initialized: bool,
    scheduled_processes: BinaryHeap<SchedulerProcess>,
    running_waiting_procs: BTreeMap<u64, SchedulerProcess>,
    exited_processes: Vec<Process>,
    max_priority: u64,
}

impl Scheduler {
    const fn new() -> Self {
        Self {
            interrupt_initialized: false,
            scheduled_processes: BinaryHeap::new(),
            running_waiting_procs: BTreeMap::new(),
            exited_processes: Vec::new(),
            max_priority: u64::MAX,
        }
    }

    pub fn push_process(&mut self, process: Process) {
        // data will be rewritten
        self.reschedule_process(SchedulerProcess {
            process: RefCell::new(Box::new(process)),
            state: ProcessState::Scheduled,
            priority_counter: self.max_priority,
        })
    }

    fn init_interrupt(&mut self) {
        if self.interrupt_initialized {
            return;
        }
        self.interrupt_initialized = true;

        interrupts::create_scheduler_interrupt(scheduler_interrupt_handler);
        interrupts::create_syscall_interrupt(syscall_interrupt_handler);
    }

    fn reschedule_process(&mut self, mut process: SchedulerProcess) {
        if SHUTDOWN.load(Ordering::Acquire) {
            let mut inner_proc = process.process.into_inner();
            info!(
                "Process {} is not rescheduled as the scheduler is shutting down",
                inner_proc.id
            );
            inner_proc.exit(0xFF);
            self.exited_processes.push(*inner_proc);
            return;
        }
        process.priority_counter = self.max_priority;
        process.state = ProcessState::Scheduled;
        self.scheduled_processes.push(process);
    }

    fn reset_scheduled_processes_counters(&mut self) {
        let max_priority = u64::MAX;
        self.scheduled_processes = self
            .scheduled_processes
            .drain()
            .map(|mut p| {
                p.priority_counter = max_priority;
                p
            })
            .collect::<BinaryHeap<_>>();
    }

    fn try_wake_waiting_processes(&mut self) {
        let time_now = clock::clocks().time_since_startup();

        // First, check waiting processes
        let extracted = self
            .running_waiting_procs
            .extract_if(|_, process| {
                let mut remove = false;
                let mut inner_proc = process.process.borrow_mut();
                match process.state {
                    ProcessState::WaitingForPid(_) | ProcessState::Running => {
                        self.exited_processes.retain_mut(|exited_proc| {
                            let found_parent = exited_proc.parent_id == inner_proc.id;

                            // add to parent
                            if found_parent {
                                inner_proc.add_child_exit(exited_proc.id, exited_proc.exit_code);
                            }

                            // wake explicit waiters
                            if let ProcessState::WaitingForPid(pid) = process.state {
                                if pid == exited_proc.id {
                                    remove = true;
                                    // put the exit code in rax
                                    // this should return to user mode directly
                                    assert_eq!(
                                        inner_proc.context.cs & 0x3,
                                        3,
                                        "must be from user only"
                                    );
                                    inner_proc.context.rax = exited_proc.exit_code as u64;
                                }
                            }

                            // retain if we didn't find the parent
                            !found_parent
                        });
                    }
                    ProcessState::WaitingForTime(t) => {
                        if t <= time_now {
                            remove = true;
                        }
                    }
                    _ => unreachable!("We can't have Scheduled state here"),
                }
                remove
            })
            .collect::<Vec<_>>();

        for (_, process) in extracted {
            self.reschedule_process(process);
        }

        // here are processes with parent either in `scheduled_processes` or already gone
        //let mut scheduled_list = self.scheduled_processes.drain().collect::<Vec<_>>();
        for exited_proc in self.exited_processes.drain(..) {
            for process in self.scheduled_processes.iter() {
                let mut inner_proc = process.process.borrow_mut();
                if inner_proc.id == exited_proc.parent_id {
                    inner_proc.add_child_exit(exited_proc.id, exited_proc.exit_code);
                }
            }
        }

        // we can clear here, since we don't use the vm of the process anymore
        self.exited_processes.clear();
    }

    /// Exits all non-running (waiting and scheduled) processes.
    /// The [`schedule`] function will return when all processes are done.
    fn exit_idle_processes(&mut self) {
        // TODO: implement graceful shutdown and wait for processes to exit
        for process in self.scheduled_processes.drain() {
            let mut inner_proc = process.process.into_inner();
            info!("Force stopping process {}", inner_proc.id);
            inner_proc.exit(0);
        }
        // shutdown the waiting processes
        self.running_waiting_procs
            .retain(|_, process| match process.state {
                ProcessState::Running => true,
                ProcessState::Scheduled
                | ProcessState::WaitingForPid(_)
                | ProcessState::WaitingForTime(_) => {
                    let mut inner_proc = process.process.borrow_mut();
                    info!("Force stopping process {}", inner_proc.id);
                    inner_proc.exit(0);
                    false
                }
            });
    }
}

pub fn push_process(process: Process) {
    SCHEDULER.lock().push_process(process);
}

/// What this function does is that it tells the scheduler to stop scheduling any more processes.
/// And start the shutdown process.
pub fn stop_scheduler() {
    SHUTDOWN.store(true, Ordering::Relaxed);
}

pub fn schedule() {
    SCHEDULER.lock().init_interrupt();

    loop {
        let current_cpu = cpu::cpu();
        assert!(current_cpu.context.is_none());

        let mut scheduler = SCHEDULER.lock();
        let shutdown = SHUTDOWN.load(Ordering::Acquire);
        if shutdown {
            scheduler.exit_idle_processes();
        }

        current_cpu.push_cli();

        scheduler.try_wake_waiting_processes();

        // check if we need to reset the priority counters
        if scheduler
            .scheduled_processes
            .peek()
            .map(|p| p.priority_counter < MIN_PRIORITY_VALUE)
            .unwrap_or(false)
        {
            scheduler.reset_scheduled_processes_counters();
        }

        let top = scheduler.scheduled_processes.pop();

        if let Some(mut top) = top {
            assert_eq!(top.state, ProcessState::Scheduled);
            top.state = ProcessState::Running;
            let pid;
            if !shutdown {
                {
                    let mut inner_proc = top.process.borrow_mut();
                    pid = inner_proc.id;

                    // the higher the value, the lower the priority
                    let decrement = 6 - inner_proc.priority as u64;
                    top.priority_counter -= decrement;

                    scheduler.max_priority = top.priority_counter;
                    // SAFETY: we are the scheduler and running in kernel space, so it's safe to switch to this vm
                    // as it has clones of our kernel mappings
                    unsafe { inner_proc.switch_to_this_vm() };
                    current_cpu.process_id = inner_proc.id;
                    current_cpu.context = Some(inner_proc.context);
                    current_cpu.scheduling = true;
                }
                scheduler.running_waiting_procs.insert(pid, top);
            }

            current_cpu.pop_cli();
        }

        if shutdown
            && scheduler.scheduled_processes.is_empty()
            && scheduler.running_waiting_procs.is_empty()
            && current_cpu.context.is_none()
        {
            break;
        }

        drop(scheduler);

        if current_cpu.context.is_some() {
            // call scheduler_interrupt_handler
            // we are using interrupts to switch context since it allows us to save the registers of exit, which is
            // very convenient
            // The `sys_exit` syscall changes the context from user to kernel,
            // and because of how we implemented syscalls, the result will be in `rax`, so we tell
            // the compiler to ignore `rax` as it may be clobbered after this call
            unsafe { core::arch::asm!("int 0xff", out("rax") _) }
            // SAFETY: we are not running in any process context, so it's safe to go back to the kernel
            unsafe { virtual_memory_mapper::switch_to_kernel() };
        } else {
            // no process to run, just wait for interrupts
            unsafe { cpu::halt() };
        }
    }
}

fn with_current_process_and_state<F, U>(f: F) -> U
where
    F: FnOnce(&mut SchedulerProcess) -> U,
{
    let current_cpu = cpu::cpu();
    let mut scheduler = SCHEDULER.lock();
    let process = scheduler
        .running_waiting_procs
        .get_mut(&current_cpu.process_id)
        .expect("current process not found");
    assert_eq!(process.state, ProcessState::Running);
    f(process)
}

/// # Safety
/// Must ensure that this is called and handled inside pop_cli and push_cli block, as an interrupt in the middle
/// causes the `current_process` to be unavailable later on
unsafe fn take_current_process() -> SchedulerProcess {
    let current_cpu = cpu::cpu();
    let process = SCHEDULER
        .lock()
        .running_waiting_procs
        .remove(&current_cpu.process_id)
        .expect("current process not found");
    assert_eq!(process.state, ProcessState::Running);
    process
}

pub fn with_current_process<F, U>(f: F) -> U
where
    F: FnOnce(&mut Process) -> U,
{
    with_current_process_and_state(|p| f(&mut p.process.borrow_mut()))
}

pub fn with_process<F, U>(pid: u64, f: F) -> U
where
    F: FnOnce(&mut Process) -> U,
{
    let scheduler = SCHEDULER.lock();
    let process = scheduler
        .running_waiting_procs
        .get(&pid)
        .unwrap_or_else(|| {
            scheduler
                .scheduled_processes
                .iter()
                .find(|p| p.process.borrow().id == pid)
                .expect("process not found")
        });
    let r = f(&mut process.process.borrow_mut());
    r
}

/// Exit the current process, and move the `all_state` to the scheduler.
/// The caller of this function (i.e. interrupt) will use the `all_state` to go back to the scheduler.
/// This function will remove the context from the CPU, and thus the value in `all_state` will be dropped.
pub fn exit_current_process(exit_code: i32, all_state: &mut InterruptAllSavedState) {
    let current_cpu = cpu::cpu();
    assert!(current_cpu.context.is_some());
    current_cpu.push_cli();

    // SAFETY: called within push_cli and pop_cli
    let process = unsafe { take_current_process() };

    let mut inner_proc = process.process.into_inner();

    trace!("Process {} exited with code {}", inner_proc.id, exit_code);

    swap_context(current_cpu.context.as_mut().unwrap(), all_state);
    // Even though this context won't run again
    // This may be useful if a process wants to read that context later on.
    // The virtual memory will be cleared once we drop the process
    // thus, we can't drop the process here
    inner_proc.context = current_cpu.context.take().unwrap();
    inner_proc.exit(exit_code);

    SCHEDULER.lock().exited_processes.push(*inner_proc);

    current_cpu.pop_cli();
    // go back to the kernel after the scheduler interrupt
}

pub fn sleep_current_process(time: ClockTime, all_state: &mut InterruptAllSavedState) {
    let current_cpu = cpu::cpu();
    assert!(current_cpu.context.is_some());

    let deadline = clock::clocks().time_since_startup() + time;

    with_current_process_and_state(|p| {
        current_cpu.push_cli();
        let mut inner_proc = p.process.borrow_mut();
        p.state = ProcessState::WaitingForTime(deadline);
        trace!(
            "Process {} is waiting for time {:?}",
            inner_proc.id,
            deadline
        );
        swap_context(current_cpu.context.as_mut().unwrap(), all_state);

        inner_proc.context = current_cpu.context.take().unwrap();
    });

    current_cpu.pop_cli();
    // go back to the kernel after the scheduler interrupt
}

pub fn yield_current_if_any(all_state: &mut InterruptAllSavedState) {
    let current_cpu = cpu::cpu();
    // do not yield if we don't have context, or we are in the middle of scheduling
    if current_cpu.context.is_none() || current_cpu.scheduling {
        return;
    }
    current_cpu.push_cli();
    // SAFETY: called within push_cli and pop_cli
    let process = unsafe { take_current_process() };
    swap_context(current_cpu.context.as_mut().unwrap(), all_state);
    process.process.borrow_mut().context = current_cpu.context.take().unwrap();

    SCHEDULER.lock().reschedule_process(process);
    current_cpu.pop_cli();
    // go back to the kernel after the scheduler interrupt
}

pub fn is_process_running(pid: u64) -> bool {
    let scheduler = SCHEDULER.lock();
    scheduler
        .running_waiting_procs
        .keys()
        .cloned()
        .chain(
            scheduler
                .scheduled_processes
                .iter()
                .map(|p| p.process.borrow().id),
        )
        .any(|id| id == pid)
}

pub fn wait_for_pid(all_state: &mut InterruptAllSavedState, pid: u64) -> bool {
    let current_cpu = cpu::cpu();
    assert!(current_cpu.context.is_some());

    // we can't wait for a process that doesn't exist now, unless we are a parent of a process that has exited
    // see [`exit_current_process`]
    let process_found = is_process_running(pid);
    if !process_found {
        return false;
    }

    with_current_process_and_state(|p| {
        current_cpu.push_cli();
        let mut inner_proc = p.process.borrow_mut();
        p.state = ProcessState::WaitingForPid(pid);
        trace!("Process {} is waiting for process {}", inner_proc.id, pid);

        swap_context(current_cpu.context.as_mut().unwrap(), all_state);
        inner_proc.context = current_cpu.context.take().unwrap();
    });

    current_cpu.pop_cli();
    // go back to the kernel after the scheduler interrupt
    true
}

pub fn swap_context(context: &mut ProcessContext, all_state: &mut InterruptAllSavedState) {
    let mut fxsave = FxSave::default();
    unsafe { core::arch::x86_64::_fxsave64(&mut fxsave as *mut FxSave as _) };
    unsafe { core::arch::x86_64::_fxrstor64(context.fxsave.0.as_ptr() as _) };
    context.fxsave = fxsave;

    mem::swap(&mut all_state.frame.rflags, &mut context.rflags);
    mem::swap(&mut all_state.frame.rip, &mut context.rip);
    all_state.frame.cs = mem::replace(&mut context.cs, all_state.frame.cs as _) as _;
    mem::swap(&mut all_state.frame.rsp, &mut context.rsp);
    all_state.frame.ss = mem::replace(&mut context.ss, all_state.frame.ss as _) as _;

    mem::swap(&mut all_state.rest.ds, &mut context.ds);
    mem::swap(&mut all_state.rest.es, &mut context.es);
    mem::swap(&mut all_state.rest.fs, &mut context.fs);
    mem::swap(&mut all_state.rest.gs, &mut context.gs);
    mem::swap(&mut all_state.rest.dr0, &mut context.dr0);
    mem::swap(&mut all_state.rest.dr1, &mut context.dr1);
    mem::swap(&mut all_state.rest.dr2, &mut context.dr2);
    mem::swap(&mut all_state.rest.dr3, &mut context.dr3);
    mem::swap(&mut all_state.rest.dr6, &mut context.dr6);
    mem::swap(&mut all_state.rest.dr7, &mut context.dr7);
    mem::swap(&mut all_state.rest.rax, &mut context.rax);
    mem::swap(&mut all_state.rest.rbx, &mut context.rbx);
    mem::swap(&mut all_state.rest.rcx, &mut context.rcx);
    mem::swap(&mut all_state.rest.rdx, &mut context.rdx);
    mem::swap(&mut all_state.rest.rsi, &mut context.rsi);
    mem::swap(&mut all_state.rest.rdi, &mut context.rdi);
    mem::swap(&mut all_state.rest.rbp, &mut context.rbp);
    mem::swap(&mut all_state.rest.r8, &mut context.r8);
    mem::swap(&mut all_state.rest.r9, &mut context.r9);
    mem::swap(&mut all_state.rest.r10, &mut context.r10);
    mem::swap(&mut all_state.rest.r11, &mut context.r11);
    mem::swap(&mut all_state.rest.r12, &mut context.r12);
    mem::swap(&mut all_state.rest.r13, &mut context.r13);
    mem::swap(&mut all_state.rest.r14, &mut context.r14);
    mem::swap(&mut all_state.rest.r15, &mut context.r15);
}

extern "cdecl" fn scheduler_interrupt_handler(all_state: &mut InterruptAllSavedState) {
    assert_eq!(all_state.frame.cs & 0x3, 0, "must be from kernel only");
    let current_cpu = cpu::cpu();
    assert!(current_cpu.context.is_some());
    assert!(current_cpu.scheduling);
    assert!(current_cpu.interrupts_disabled());

    // we can yield at this point after we go to the process
    current_cpu.scheduling = false;

    swap_context(current_cpu.context.as_mut().unwrap(), all_state);
}

extern "cdecl" fn syscall_interrupt_handler(all_state: &mut InterruptAllSavedState) {
    assert_eq!(all_state.frame.cs & 0x3, 3, "must be from user only");
    let current_cpu = cpu::cpu();
    assert!(current_cpu.context.is_some());

    syscalls::handle_syscall(all_state);
}