1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
use core::{
    cell::UnsafeCell,
    fmt,
    marker::PhantomData,
    ops::{Deref, DerefMut},
    sync::atomic::{AtomicI64, Ordering},
};

use crate::cpu;

use super::lock;

pub struct Mutex<T: ?Sized> {
    lock: lock::Lock,
    owner_cpu: AtomicI64,
    data: UnsafeCell<T>,
}

unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}

impl<T> fmt::Debug for Mutex<T>
where
    T: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut s = f.debug_struct("Mutex");
        s.field("owner_cpu", &self.owner_cpu);
        if let Some(data) = self.try_lock() {
            s.field("data", &data);
        } else {
            s.field("data", &"[locked]");
        }
        s.finish()
    }
}

#[must_use]
pub struct MutexGuard<'a, T: ?Sized + 'a> {
    lock: &'a Mutex<T>,
    marker: PhantomData<*const ()>, // !Send
}

unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}

impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T> Mutex<T> {
    pub const fn new(data: T) -> Self {
        Self {
            lock: lock::Lock::new(),
            owner_cpu: AtomicI64::new(-1),
            data: UnsafeCell::new(data),
        }
    }
}

impl<T: ?Sized> Mutex<T> {
    pub fn lock(&self) -> MutexGuard<T> {
        let cpu = cpu::cpu();
        cpu.push_cli(); // disable interrupts to avoid deadlock
        let cpu_id = cpu.id as i64;

        if self.owner_cpu.load(Ordering::Relaxed) == cpu_id {
            panic!("Mutex already locked by this CPU");
        } else {
            self.lock.write_lock();
            self.owner_cpu.store(cpu_id, Ordering::Relaxed);
            MutexGuard {
                lock: self,
                marker: PhantomData,
            }
        }
    }

    pub fn try_lock(&self) -> Option<MutexGuard<T>> {
        let cpu = cpu::cpu();
        cpu.push_cli(); // disable interrupts to avoid deadlock
        let cpu_id = cpu.id as i64;

        if self.owner_cpu.load(Ordering::Relaxed) == cpu_id {
            // we will not throw here, since the CPU might want to try to lock it again, at least its not a deadlock
            cpu.pop_cli();
            None
        } else if self.lock.try_write_lock() {
            self.owner_cpu.store(cpu_id, Ordering::Relaxed);
            Some(MutexGuard {
                lock: self,
                marker: PhantomData,
            })
        } else {
            cpu.pop_cli();
            None
        }
    }

    /// A special method to allow accessing the variable inside
    /// the lock after locking it.
    ///
    /// The difference between this and using `Deref` is that
    /// the lifetime of the returned reference is tied to main value of the lock.
    #[allow(dead_code)]
    pub fn run_with<'a, R>(&'a self, f: impl FnOnce(&'a T) -> R) -> R {
        let guard: MutexGuard<'a, T> = self.lock();
        let d = unsafe { guard.lock.data.get().as_ref().unwrap() };
        f(d)
    }

    /// A special method to allow accessing the variable inside
    /// the lock after locking it.
    ///
    /// The difference between this and using `DerefMut` is that
    /// the lifetime of the returned reference is tied to main value of the lock.
    #[allow(dead_code)]
    pub fn run_with_mut<'a, R>(&'a self, f: impl FnOnce(&'a mut T) -> R) -> R {
        let guard: MutexGuard<'a, T> = self.lock();
        let d = unsafe { guard.lock.data.get().as_mut().unwrap() };
        f(d)
    }

    /// We know statically that no one else is accessing the lock, so we can
    /// just return a reference to the data without acquiring the lock.
    #[allow(dead_code)]
    pub fn get_mut(&mut self) -> &mut T {
        self.data.get_mut()
    }
}

impl<T: ?Sized> Deref for MutexGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        // SAFETY: the mutex is locked, we are the only accessors,
        //         and the pointer is valid, since it was generated for a valid T
        unsafe { self.lock.data.get().as_ref().unwrap() }
    }
}

impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        // SAFETY: the mutex is locked, we are the only accessors,
        //         and the pointer is valid, since it was generated for a valid T
        unsafe { self.lock.data.get().as_mut().unwrap() }
    }
}

impl<T: ?Sized> Drop for MutexGuard<'_, T> {
    fn drop(&mut self) {
        self.lock.owner_cpu.store(-1, Ordering::Relaxed);
        // SAFETY: the mutex is locked, we are the only accessor
        unsafe { self.lock.lock.write_unlock() };
        cpu::cpu().pop_cli(); // re-enable interrupts
    }
}