1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
use core::{
    cell::UnsafeCell,
    fmt,
    marker::PhantomData,
    ops::{Deref, DerefMut},
    ptr::NonNull,
    sync::atomic::{AtomicI64, Ordering},
};

use crate::cpu;

use super::lock;

pub struct RwLock<T: ?Sized> {
    lock: lock::Lock,
    owner_cpu: AtomicI64,
    data: UnsafeCell<T>,
}

unsafe impl<T: ?Sized + Send> Send for RwLock<T> {}
unsafe impl<T: ?Sized + Send + Sync> Sync for RwLock<T> {}

impl<T> fmt::Debug for RwLock<T>
where
    T: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut s = f.debug_struct("RwLock");
        s.field("owner_cpu", &self.owner_cpu);
        if let Some(data) = self.try_read() {
            s.field("data", &data);
        } else {
            s.field("data", &"[write locked]");
        }
        s.finish()
    }
}

pub struct RwLockReadGuard<'a, T: ?Sized + 'a> {
    // NB: we use a pointer instead of `&'a T` to avoid `noalias` violations, because a
    // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
    // `NonNull` is also covariant over `T`, just like we would have with `&T`. `NonNull`
    // is preferable over `const* T` to allow for niche optimization.
    data: NonNull<T>,
    inner_lock: &'a lock::Lock,
    marker: PhantomData<*const ()>, // !Send
}

unsafe impl<T: ?Sized + Sync> Sync for RwLockReadGuard<'_, T> {}

pub struct RwLockWriteGuard<'a, T: ?Sized + 'a> {
    lock: &'a RwLock<T>,
    marker: PhantomData<*const ()>, // !Send
}

unsafe impl<T: ?Sized + Sync> Sync for RwLockWriteGuard<'_, T> {}

impl<T: ?Sized + fmt::Debug> fmt::Debug for RwLockReadGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T: ?Sized + fmt::Display> fmt::Display for RwLockReadGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for RwLockWriteGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T: ?Sized + fmt::Display> fmt::Display for RwLockWriteGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[allow(dead_code)]
impl<T> RwLock<T> {
    pub const fn new(data: T) -> Self {
        Self {
            lock: lock::Lock::new(),
            owner_cpu: AtomicI64::new(-1),
            data: UnsafeCell::new(data),
        }
    }
}

#[allow(dead_code)]
impl<T: ?Sized> RwLock<T> {
    pub fn read(&self) -> RwLockReadGuard<T> {
        self.lock.read_lock();
        // must be -1, i.e. no owner
        self.owner_cpu.store(-1, Ordering::Relaxed);
        RwLockReadGuard {
            data: unsafe { NonNull::new_unchecked(self.data.get()) },
            inner_lock: &self.lock,
            marker: PhantomData,
        }
    }

    pub fn try_read(&self) -> Option<RwLockReadGuard<T>> {
        if self.lock.try_read_lock() {
            // must be -1, i.e. no owner
            self.owner_cpu.store(-1, Ordering::Relaxed);
            Some(RwLockReadGuard {
                data: unsafe { NonNull::new_unchecked(self.data.get()) },
                inner_lock: &self.lock,
                marker: PhantomData,
            })
        } else {
            None
        }
    }

    pub fn write(&self) -> RwLockWriteGuard<T> {
        let cpu = cpu::cpu();
        cpu.push_cli(); // disable interrupts to avoid deadlock
        let cpu_id = cpu.id as i64;

        if self.owner_cpu.load(Ordering::Relaxed) == cpu_id {
            panic!("Mutex already locked by this CPU");
        } else {
            self.lock.write_lock();
            self.owner_cpu.store(cpu_id, Ordering::Relaxed);
            RwLockWriteGuard {
                lock: self,
                marker: PhantomData,
            }
        }
    }

    pub fn try_write(&self) -> Option<RwLockWriteGuard<T>> {
        let cpu = cpu::cpu();
        cpu.push_cli(); // disable interrupts to avoid deadlock
        let cpu_id = cpu.id as i64;

        if self.owner_cpu.load(Ordering::Relaxed) == cpu_id {
            // we will not throw here, since the CPU might want to try to lock it again, at least its not a deadlock
            cpu.pop_cli();
            None
        } else if self.lock.try_write_lock() {
            self.owner_cpu.store(cpu_id, Ordering::Relaxed);
            Some(RwLockWriteGuard {
                lock: self,
                marker: PhantomData,
            })
        } else {
            cpu.pop_cli();
            None
        }
    }

    /// We know statically that no one else is accessing the lock, so we can
    /// just return a reference to the data without acquiring the lock.
    #[allow(dead_code)]
    pub fn get_mut(&mut self) -> &mut T {
        self.data.get_mut()
    }
}

impl<T: ?Sized> Deref for RwLockReadGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        // SAFETY: the mutex is locked, we may not be the only accessors, but we know,
        //         that no one will change the value, thus we can get multiple references at the same time
        unsafe { self.data.as_ref() }
    }
}

impl<T: ?Sized> Deref for RwLockWriteGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        // SAFETY: the mutex is locked, we are the only accessors,
        //         and the pointer is valid, since it was generated for a valid T
        unsafe { &*self.lock.data.get() }
    }
}

impl<T: ?Sized> DerefMut for RwLockWriteGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        // SAFETY: the mutex is locked, we are the only accessors,
        //         and the pointer is valid, since it was generated for a valid T
        unsafe { &mut *self.lock.data.get() }
    }
}

impl<T: ?Sized> Drop for RwLockReadGuard<'_, T> {
    fn drop(&mut self) {
        // SAFETY: the mutex is locked, we are the only accessor
        unsafe { self.inner_lock.read_unlock() };
    }
}

impl<T: ?Sized> Drop for RwLockWriteGuard<'_, T> {
    fn drop(&mut self) {
        assert_ne!(self.lock.owner_cpu.load(Ordering::Relaxed), -1);
        self.lock.owner_cpu.store(-1, Ordering::Relaxed);
        // SAFETY: the mutex is locked, we are the only accessor
        unsafe { self.lock.lock.write_unlock() };
        cpu::cpu().pop_cli(); // re-enable interrupts
    }
}